菊池 脩太 (キクチ シユウタ)

Kikuchi, Shuta

写真a

所属(所属キャンパス)

理工学研究科 (矢上)

職名

特任助教(有期)

経歴 【 表示 / 非表示

  • 2019年04月
    -
    2022年12月

    ライオン株式会社, 研究開発本部 安全性科学研究所, 研究員

  • 2023年01月
    -
    2024年03月

    ライオン株式会社, 研究開発本部 先進解析科学研究所 微生物制御グループ, 研究員

  • 2024年04月
    -
    継続中

    慶應義塾大学, 理工学研究科, 特任助教

  • 2024年09月
    -
    継続中

    筑波大学, 情報学群情報科学類, 非常勤講師

学歴 【 表示 / 非表示

  • 2013年04月
    -
    2017年03月

    早稲田大学, 先進理工学部, 生命医科学科

  • 2017年04月
    -
    2019年03月

    早稲田大学, 大学院先進理工学研究科, 生命医科学専攻

  • 2021年04月
    -
    2024年03月

    慶應義塾大学, 理工学研究科, 基礎理工学専攻 物理情報専修

 

研究分野 【 表示 / 非表示

  • 自然科学一般 / 数理物理、物性基礎

  • ライフサイエンス / 応用微生物学

  • 情報通信 / 生命、健康、医療情報学

  • 環境・農学 / 環境影響評価

研究キーワード 【 表示 / 非表示

  • イジングマシン

  • シミュレーション

  • ネットワーク科学

  • 微生物学

  • 感染制御学

全件表示 >>

 

論文 【 表示 / 非表示

  • Evaluation of Infection Prevention Measures in Elementary Schools Using an Agent-Based Model

    Shuta Kikuchi, Taisei Mukai, Keisuke Nakajima, Yasuki Kato, Takeshi Takizawa, Junichi Sugiyama, Yasushi Kakizawa, Setsuya Kurahashi

    Advances in Social Simulation    253 - 263 2025年10月

    筆頭著者, 査読有り

  • Extending Sample Persistence Variable Reduction for Constrained Combinatorial Optimization Problems

    Shunta Ide, Shuta Kikuchi, Shu Tanaka

    arXiv 2509.19280 2025年09月

     概要を見る

    Constrained combinatorial optimization problems (CCOPs) are challenging to solve due to the exponential growth of the solution space. When tackled with Ising machines, constraints are typically enforced by the penalty function method, whose coefficients must be carefully tuned to balance feasibility and objective quality. Variable-reduction techniques such as sample persistence variable reduction (SPVAR) can mitigate hardware limitations of Ising machines, yet their behavior on CCOPs remains insufficiently understood. Building on our prior proposal, we extend and comprehensively evaluate multi-penalty SPVAR (MP-SPVAR), which fixes variables using solution persistence aggregated across multiple penalty coefficients. Experiments on benchmark problems, including the quadratic assignment problem and the quadratic knapsack problem, demonstrate that MP-SPVAR attains higher feasible-solution ratios while matching or improving approximation ratios relative to the conventional SPVAR algorithm. An examination of low-energy states under small penalties clarifies when feasibility degrades and how encoding choices affect the trade-off between solution quality and feasibility. These results position MP-SPVAR as a practical variable-reduction strategy for CCOPs and lay a foundation for systematic penalty tuning, broader problem classes, and integration with quantum-inspired optimization hardware as well as quantum algorithms.

  • Optimization Performance of Factorization Machine with Annealing under Limited Training Data

    Mayumi Nakano, Yuya Seki, Shuta Kikuchi, Shu Tanaka

    arXiv 2507.21024 2025年07月

     概要を見る

    Black-box (BB) optimization problems aim to identify an input that minimizes the output of a function (the BB function) whose input-output relationship is unknown. Factorization machine with annealing (FMA) is a promising approach to this task, employing a factorization machine (FM) as a surrogate model to iteratively guide the solution search via an Ising machine. Although FMA has demonstrated strong optimization performance across various applications, its performance often stagnates as the number of optimization iterations increases. One contributing factor to this stagnation is the growing number of data points in the dataset used to train FM. It is hypothesized that as more data points are accumulated, the contribution of newly added data points becomes diluted within the entire dataset, thereby reducing their impact on improving the prediction accuracy of FM. To address this issue, we propose a novel method for sequential dataset construction that retains at most a specified number of the most recently added data points. This strategy is designed to enhance the influence of newly added data points on the surrogate model. Numerical experiments demonstrate that the proposed FMA achieves lower-cost solutions with fewer BB function evaluations compared to the conventional FMA.

  • Effectiveness of Hybrid Optimization Method for Quantum Annealing Machines

    Shuta Kikuchi, Nozomu Togawa, Shu Tanaka

    arXiv 2507.15544 2025年07月

    筆頭著者, 責任著者

     概要を見る

    To enhance the performance of quantum annealing machines, several methods have been proposed to reduce the number of spins by fixing spin values through preprocessing. We proposed a hybrid optimization method that combines a simulated annealing (SA)-based non-quantum-type Ising machine with a quantum annealing machine. However, its applicability remains unclear. Therefore, we evaluated the performance of the hybrid method on large-size Ising models and analyzed its characteristics. The results indicate that the hybrid method improves upon solutions obtained by the preprocessing SA, even if the Ising models cannot be embedded in the quantum annealing machine. We analyzed the method from three perspectives: preprocessing, spin-fixed sub-Ising model generation method, and the accuracy of the quantum annealing machine. From the viewpoint of the minimum energy gap, we found that solving the sub-Ising model with a quantum annealing machine results in a higher solution accuracy than solving the original Ising model. Additionally, we demonstrated that the number of fixed spins and the accuracy of the quantum annealing machine affect the dependency of the solution accuracy on the sub-Ising model size.

  • Quantification of droplet and contact transmission risks among elementary school students based on network analyses using video-recorded data

    Kikuchi S., Nakajima K., Kato Y., Takizawa T., Sugiyama J., Mukai T., Kakizawa Y., Kurahashi S.

    Plos One 20 ( 2 ) e0313364 2025年02月

    筆頭著者, 査読有り

     概要を見る

    In elementary schools, immunologically immature students come into close contact with each other and are susceptible to the spread of infectious diseases. To analyze pathogen transmission among students, it is essential to obtain behavioral data. Questionnaires and wearable sensor devices were used for communication behavior and swab sampling was employed for contact behavior. However, these methods have been insufficient in capturing information about the processes and actions of each student that contribute to pathogen transmission. Therefore, in this study, actual behavioral data were collected using video recordings to evaluate droplet and contact transmission in elementary schools. The analysis of communication behavior revealed the diverse nature of interactions among students. By calculating the droplet transmission probabilities based on conversation duration, the risk of droplet transmission was quantified. In the contact behavior, we introduced a novel approach for constructing contact networks based on contact history. According to this method, well-known items, such as students’ desks, doors, and faucets, were predicted to be potential fomite. In addition, students’ shirts and shared items with high contact frequency and high centrality metrics in the network, which were not evaluated in swab sampling surveys, were identified as potential fomites. The reliability of the predictions was demonstrated through micro-simulations. The micro-simulations replicated virus transmission scenarios in which virus-carrying students were present in the actual contact history. The results showed that a significant amount of virus adhered to the items predicted to be fomites. Interestingly, the micro-simulations indicated that most viral copies were transmitted through single items. The analysis of contact history, contact networks, and micro-simulations relies on videorecorded behavioral data, highlighting the importance of this method. This study contributes significantly to the prevention of infectious diseases in elementary schools by providing evidence-based information about transmission pathways and behavior-related risks.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

総説・解説等 【 表示 / 非表示

全件表示 >>

研究発表 【 表示 / 非表示

  • A dataset construction strategy for factorization machine with annealing to improve optimization performance

    Mayumi Nakano, Yuya Seki, Shuta Kikuchi, Shu Tanaka

    International Network on Quantum Annealing (INQA) Conference 2025, 

    2025年11月

    ポスター発表

  • Overcoming hardware limitations of quantum annealing via spin-variable reduction for linear equality constraints

    Riko Okabe, Shuta Kikuchi, Shu Tanaka

    International Network on Quantum Annealing (INQA) Conference 2025, 

    2025年11月

    ポスター発表

  • Extensions and Evaluation of the Sample Persistence Algorithm for Constrained Combinatorial Optimization Problems

    Shunta Ide, Shuta Kikuchi, Shu Tanaka

    International Network on Quantum Annealing (INQA) Conference 2025, 

    2025年11月

    口頭発表(一般)

  • Extended FMA via Space-Filling Quasi-Random Sequences

    Taiga Hayashi, Yuya Seki, Kotaro Terada, Yosuke Mukasa, Shuta Kikuchi, Shu Tanaka

    International Network on Quantum Annealing (INQA) Conference 2025, 

    2025年11月

    ポスター発表

  • Evaluation of the Effects of Integer Assignment in RNA Inverse Folding Problem Using Factorization Machine with Annealing

    Shuta Kikuchi, Shu Tanaka

    International Network on Quantum Annealing (INQA) Conference 2025, 

    2025年11月

    口頭発表(一般)

全件表示 >>

Works 【 表示 / 非表示

受賞 【 表示 / 非表示

  • エディテージ・グラント2024

    菊池脩太, 2024年09月, カクタス・コミュニケーションズ株式会社, 社会課題解決に向けた量子アニーリングマシンのキラーアプリケーション探索

その他 【 表示 / 非表示

  • バイオインフォマティクス技術者認定試験 合格

    2025年

     内容を見る

    特定非営利活動法人 日本バイオインフォマティクス学会

  • Complete "Materials Data Sciences and Informatics" Course

    2022年

     内容を見る

    Georgia Institute of Technology, Coursera

  • 実験動物2級技術者資格認定試験 合格

    2020年

     内容を見る

    公益社団法人 日本実験動物協会

  • 「学術的文章の作成」授業 文章指導員

    2017年

     内容を見る

    早稲田大学アカデミック・ライティング・プログラム

  • 技術経営リーダー専修コース 修了

    2017年

     内容を見る

    早稲田大学大学院 創造理工学研究科 経営デザイン専攻

全件表示 >>

 

担当経験のある授業科目 【 表示 / 非表示

  • 情報リテラシー(講義)

    筑波大学

    2025年05月
    -
    2025年07月

  • AI・プログラミング基礎演習

    千葉工業大学

    2025年04月
    -
    2025年07月

  • 物理情報工学特別講義

    慶應義塾大学

    2025年04月
    -
    2025年07月

  • データサイエンス

    筑波大学

    2024年10月
    -
    継続中

 

社会活動 【 表示 / 非表示

  • バイオ×計算×量子 異分野を超えた挑戦の今とこれから~民間企業研究者、社会人博士、大学特任教員を経て~

    慶應義塾大学, 物理情報工学特別講義, 

    2025年05月
  • 量子・古典ハイブリッド計算システム構築のための研究開発

    慶應義塾先端科学技術研究センター(KLL), 第25回慶應科学技術展 KEIO TECHNO-MALL 2024, 

    2024年12月
  • Quantum CAE向け量子・AI最適化ソフトウェア

    国立研究開発法人 科学技術振興機構, 大学見本市2024〜イノベーションジャパン, 

    2024年08月
  • 学生向けセミナー「水環境ビジネスガイダンス」

    公益社団法人 日本水環境学会 産官学協力委員会, 第56回日本水環境学会年会, 

    2022年03月

全件表示 >>

所属学協会 【 表示 / 非表示

  • 日本学校保健学会, 

    2023年04月
    -
    2024年03月
  • 日本物理学会, 

    2021年11月
    -
    継続中

委員歴 【 表示 / 非表示

  • 2025年10月
    -
    継続中

    領域11運営委員, 一般社団法人 日本物理学会