フォンス, ポール (フォンス ポール)

Fons, Paul

写真a

所属(所属キャンパス)

理工学部 電気情報工学科 (矢上)

職名

教授

 

著書 【 表示 / 非表示

  • 電子材料と光材料のスプリンガー ハンドブック

    ポール フォンス, Springer, 2017年,  ページ数: xxxvi, 1536 p.

    担当範囲: 相変化メモリ材料

  • Phase change materials : science and applications

    Raoux, Simone, Wutting, Matthias, Springer, 2009年,  ページ数: xxii, 446 p.

論文 【 表示 / 非表示

  • Photo‐Induced Tellurium Segregation in MoTe 2

    Takumi Fukuda, Ryota Kaburauchi, Yuta Saito, Kotaro Makino, Paul Fons, Keiji Ueno, Muneaki Hase

    physica status solidi (RRL) – Rapid Research Letters (Wiley)  16 ( 9 ) 2100633 - 2100633 2022年06月

    ISSN  1862-6254

  • Improved Ordering of Quasi-Two-Dimensional MoS<inf>2</inf>via an Amorphous-to-Crystal Transition Initiated from Amorphous Sulfur-Rich MoS<inf>2+ x</inf>

    Milos Krbal, Vit Prokop, Jan Prikryl, Jhonatan Rodriguez Pereira, Igor Pis, Alexander V. Kolobov, Paul J. Fons, Yuta Saito, Shogo Hatayama, Yuji Sutou

    Crystal Growth and Design 22 ( 5 ) 3072 - 3079 2022年05月

    ISSN  1528-7483

     概要を見る

    The synthesis of stoichiometric two-dimensional (2D) transition-metal dichalcogenides (TMDC) over large areas remains challenging. Using a combination of X-ray diffraction and X-ray absorption spectroscopy, we demonstrate the advantages of using a thin amorphous layer of S-rich MoS2(MoS4in this paper) for the growth of well-ordered crystalline MoS2films via annealing at 900 °C. In contrast to the crystallization of stoichiometric amorphous MoS2, the crystallization of the as-deposited amorphous MoS4phase shows the strong preferred ordering of layered MoS2on a Si/SiOxnontemplating substrate with the dominant (002) crystallographic plane and accompanying Kiessig fringes, which indicate the improved crystallinity of the MoS2layers. A similar effect can only be achieved by the templated crystallization of an amorphous MoS2thin film deposited on a c-plane sapphire substrate. We suggest that the crystal growth improvement originates from the lower coordination number (CN) of the Mo atoms in the MoS4amorphous phase (CN = 4) in comparison with that of amorphous MoS2(CN = 6) and the gradual release of free sulfur atoms from the thin film during crystallization.

  • The formation of a one-dimensional van der Waals selenium crystal from the three-dimensional amorphous phase: A spectroscopic signature of van der Waals bonding

    Milos Krbal, Alexander V. Kolobov, Paul Fons, Yuta Saito, George Belev, Safa Kasap

    Applied Physics Letters 2022年01月

  • Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: amorphous, 1T′ and 2H phases

    Shogo Hatayama, Yuta Saito, Kotaro Makino, Noriyuki Uchida, Yi Shuang, Shunsuke Mori, Yuji Sutou, Milos Krbal, Paul Fons

    Journal of Materials Chemistry C (Royal Society of Chemistry (RSC))  10 ( 29 ) 10627 - 10635 2022年

    ISSN  2050-7526

     概要を見る

    The crystallization mechanism of sputter-deposited amorphous Mo–Te film is revealed enabling the large-area growth of 2D materials.

  • Dimensional transformation of chemical bonding during crystallization in a layered chalcogenide material

    Yuta Saito, Shogo Hatayama, Yi Shuang, Paul Fons, Alexander V. Kolobov, Yuji Sutou

    Scientific Reports (NATURE RESEARCH)  11 ( 1 ) 4782 - 4782 2021年12月

    研究論文(学術雑誌), 共著,  ISSN  2045-2322

     概要を見る

    Two-dimensional (2D) van der Waals (vdW) materials possess a crystal structure in which a covalently-bonded few atomic-layer motif forms a single unit with individual motifs being weakly bound to each other by vdW forces. Cr Ge Te is known as a 2D vdW ferromagnetic insulator as well as a potential phase change material for non-volatile memory applications. Here, we provide evidence for a dimensional transformation in the chemical bonding from a randomly bonded three-dimensional (3D) disordered amorphous phase to a 2D bonded vdW crystalline phase. A counterintuitive metastable “quasi-layered” state during crystallization that exhibits both “long-range order and short-range disorder” with respect to atomic alignment clearly distinguishes the system from conventional materials. This unusual behavior is thought to originate from the 2D nature of the crystalline phase. These observations provide insight into the crystallization mechanism of layered materials in general, and consequently, will be useful for the realization of 2D vdW material-based functional nanoelectronic device applications. 2 2 6

全件表示 >>

総説・解説等 【 表示 / 非表示

  • 不揮発性メモリ用Cr2Ge2Te6相変化材料の局所構造の解明

    畑山祥吾, YI Shuang, FONS Paul, FONS Paul, 齊藤雄太, KOLOBOV Alexander V., KOLOBOV Alexander V., 小林啓介, 進藤怜史, 安藤大輔, 須藤祐司

    応用物理学会春季学術講演会講演予稿集(CD-ROM) 67th 2020年

    その他, 共著

  • 不揮発性相変化メモリ用遷移金属カルコゲナイド相変化材料の開発

    齊藤雄太, 畑山祥吾, YI Shuang, 進藤怜史, FONS Paul, KOLOBOV Alexander V., 小林啓介, 小林啓介, 小林啓介, 須藤祐司

    応用物理学会春季学術講演会講演予稿集(CD-ROM) 66th 2019年

    その他, 共著

  • 1T’-MoTe2バルク結晶におけるコヒーレントフォノンの観測

    福田拓未, 牧野孝太郎, 齊藤雄太, FONS Paul, KOLOBOV Alexander V., KOLOBOV Alexander V., 上野啓司, MONDAL Richarj, 長谷宗明

    応用物理学会秋季学術講演会講演予稿集(CD-ROM) 80th 2019年

    その他, 共著

  • スパッタ法による高配向Bi-Te薄膜の成膜と電子状態解析

    齊藤雄太, FONS Paul, 牧野孝太郎, MITROFANOV Kirill V., 上杉文彦, 竹口雅樹, KOLOBOV Alexander V., 富永淳二

    日本金属学会講演概要(CD-ROM) 164th 2019年

    その他, 共著,  ISSN  2433-3093

  • Erratum: Effects of RbF postdeposition treatment and heat-light soaking on the metastable acceptor activation of CuInSe<inf>2</inf> thin film photovoltaic devices (Applied Physics Letters (2018) 113 (063901) DOI: 10.1063/1.5031898)

    Ishizuka S., Shibata H., Nishinaga J., Kamikawa Y., Fons P.

    Applied Physics Letters (Applied Physics Letters)  113 ( 11 )  2018年09月

    ISSN  00036951

     概要を見る

    © 2018 Author(s). We have found an error in Fig. 3(d) in the original published version of our paper.1 The annotations -6V and +3.0V are incorrect and should be +0.6V and -30 V, respectively. Figure 1 is a corrected version for the original Fig. 3(d). (Figure Presented).

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • アモルファス由来ファンデルワールス層状物質の結晶化機構の解明

    2019年04月
    -
    2022年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, Fons JamesPaul, 基盤研究(B), 補助金,  研究代表者

 

担当授業科目 【 表示 / 非表示

  • 電気情報工学実験第1

    2023年度

  • 総合デザイン工学課題研究

    2023年度

  • 総合デザイン工学特別研究第2

    2023年度

  • 総合デザイン工学特別研究第1

    2023年度

  • 卒業研究

    2023年度

全件表示 >>