田中 宗 (タナカ シュウ)

TANAKA Shu

写真a

所属(所属キャンパス)

理工学部 物理情報工学科 (矢上)

職名

教授

HP

研究室住所

26棟604C

研究室電話番号

045-566-1609

外部リンク

その他の所属・職名 【 表示 / 非表示

  • サスティナブル量子AI研究センター, センター長

  • ヒト生物学-微生物叢-量子計算研究センター (WPI-Bio2Q), 副拠点長

  • 量子コンピューティングセンター, KQCC Researcher

経歴 【 表示 / 非表示

  • 2008年04月
    -
    2010年03月

    東京大学, 物性研究所, 特任研究員

  • 2010年04月
    -
    2011年03月

    近畿大学, 総合理工学研究科量子コンピュータ研究センター, 博士研究員

  • 2011年04月
    -
    2014年03月

    東京大学, 大学院理学系研究科化学専攻, 日本学術振興会特別研究員(PD)

  • 2014年04月
    -
    2015年03月

    京都大学, 基礎物理学研究所, 基研特任助教(湯川フェロー)

  • 2014年10月
    -
    2015年01月

    京都大学, 総合人間学部, 非常勤講師

全件表示 >>

学歴 【 表示 / 非表示

  • 1999年04月
    -
    2003年03月

    東京工業大学, 理学部, 物理学科

    大学, 卒業

  • 2003年04月
    -
    2005年03月

    東京大学, 大学院理学系研究科, 物理学専攻

    大学院, 修了, 修士

  • 2005年04月
    -
    2008年03月

    東京大学, 大学院理学系研究科, 物理学専攻

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 博士(理学), 東京大学, 課程, 2008年03月

    Slow Dynamics in Frustrated Magnetic Systems

 

研究分野 【 表示 / 非表示

  • 自然科学一般 / 数理物理、物性基礎

研究キーワード 【 表示 / 非表示

  • 量子アニーリング

  • イジングマシン

  • 物性理論

  • 統計力学

  • 計算物理学

研究テーマ 【 表示 / 非表示

  • 量子アニーリング・イジングマシン, 

    2006年
    -
    継続中

     研究概要を見る

    量子アニーリング等イジングマシンのハードウェア開発やソフトウェア・内部アルゴリズム開発につながる基礎研究や、量子アニーリング等イジングマシンの有効なアプリケーションを探る応用研究を、多くの企業や大学、研究所の方々と緊密に連携しながら行っております。

共同研究希望テーマ 【 表示 / 非表示

  • 量子アニーリング等イジングマシンの有効なアプリケーション探索

    産学連携、民間を含む他機関等との共同研究等を希望する,  希望形態: 受託研究, 共同研究

  • 量子アニーリング等イジングマシンのソフトウェア開発につながる基礎研究

    産学連携、民間を含む他機関等との共同研究等を希望する,  希望形態: 受託研究, 共同研究

  • 量子アニーリング等イジングマシンのハードウェア開発につながる基礎研究

    産学連携、民間を含む他機関等との共同研究等を希望する,  希望形態: 受託研究, 共同研究

 

著書 【 表示 / 非表示

論文 【 表示 / 非表示

  • Machine Learning Supported Annealing for Prediction of Grand Canonical Crystal Structures

    Couzinié Y., Seki Y., Nishiya Y., Nishi H., Kosugi T., Tanaka S., Matsushita Y.I.

    Journal of the Physical Society of Japan 94 ( 4 )  2025年04月

    ISSN  00319015

     概要を見る

    This study investigates the application of Factorization Machines with Quantum Annealing (FMQA) to address the crystal structure problem (CSP) in materials science. FMQA is a black-box optimization algorithm that combines machine learning with annealing machines to find samples to a black-box function that minimize a given loss. The CSP involves determining the optimal arrangement of atoms in a material based on its chemical composition, a critical challenge in materials science. We explore FMQA’s ability to efficiently sample optimal crystal configurations by setting the loss function to the energy of the crystal configuration as given by a predefined interatomic potential. Further, we investigate how well the energies of the various metastable configurations, or local minima of the potential, are learned by the algorithm. Our investigation reveals FMQA’s potential in quick ground state sampling and in recovering relational order between local minima.

  • Formulation of Correction Term in QUBO Form for Phase-Field Model

    Aoki S., Endo K., Matsuda Y., Seki Y., Tanaka S., Muramatsu M.

    International Journal for Numerical Methods in Engineering 126 ( 6 )  2025年03月

    ISSN  00295981

     概要を見る

    In this study, we developed a method of estimating the correction terms that makes the Hamiltonian used in phase-field analysis by quantum annealing correspond to the free energy functional of the conventional phase-field analysis using the finite difference method. For the estimation of the correction terms, we employed a factorization machine. The inputs to the factorization machine were the phase-field variables in domain-wall encoding and the differences between the Gibbs free energy and Hamiltonian. We obtained the difference value in quadratic unconstrained binary optimization (QUBO) form as the output of learning using the factorization machine. The QUBO form difference was subjected to the original Hamiltonian as the correction term. The performance of this correction term was evaluated by calculating the energy for a equilibrium state of diblock copolymer. In phase-field analysis, the time evolution equation is formulated so that the total free energy decreases; hence, a lower the free energy means a more accurate result close to that of a conventional method. When we performed annealing with correction terms, the microstructure showed a Gibbs free energy that was lower than that obtained without the correction terms.

  • Advantages of Fixing Spins in Quantum Annealing

    Hattori T., Irie H., Kadowaki T., Tanaka S.

    Journal of the Physical Society of Japan 94 ( 1 )  2025年01月

    ISSN  00319015

     概要を見る

    Quantum annealing can efficiently obtain solutions to combinatorial optimization problems. Size-reduction methods are used to treat large-scale combinatorial optimization problems that cannot be input directly into a quantum annealer because of its size limitation. Various size-reduction methods using fixing spins have been proposed as quantum-classical hybrid methods to obtain solutions. However, the high performance of these hybrid methods is yet to be clearly elucidated. In this study, we adopted a parameterized fixing spins method to verify the effects of fixing spins. The results revealed that setting the appropriate number of spins of the subproblem is crucial for obtaining a satisfactory solution, and the energy gap expansion is confirmed after fixing spins.

  • Inductive Construction of Variational Quantum Circuit for Constrained Combinatorial Optimization

    Nakada H., Tanahashi K., Tanaka S.

    IEEE Access 13   73096 - 73108 2025年

     概要を見る

    In this study, we propose a new method for constrained combinatorial optimization using variational quantum circuits. Quantum computers are considered to have the potential to solve large combinatorial optimization problems faster than classical computers. Variational quantum algorithms, such as Variational Quantum Eigensolver (VQE), have been studied extensively because they are expected to work on noisy intermediate scale devices. Unfortunately, many optimization problems have constraints, which induces infeasible solutions during VQE process. Recently, several methods for efficiently solving constrained combinatorial optimization problems have been proposed by designing a quantum circuit so as to output only the states that satisfy the constraints. However, the types of available constraints are still limited. Therefore, we have started to develop variational quantum circuits that can handle a wider range of constraints. The proposed method utilizes a forwarding operation that maps from feasible states for subproblems to those for larger subproblems. As long as appropriate forwarding operations can be defined, iteration of this process can inductively construct variational circuits outputting feasible states even in the case of multiple and complex constraints. In this paper, the proposed method was applied to facility location problem. As a result, feasible solutions were obtained with 100%, and the probability of obtaining optimal solutions was over 22 times higher than that of conventional VQEs. Nevertheless, the cost of the obtained circuit was comparable to that of conventional circuits.

  • Development of optimization method for truss structure by quantum annealing

    Honda R., Endo K., Kaji T., Suzuki Y., Matsuda Y., Tanaka S., Muramatsu M.

    Scientific Reports 14 ( 1 )  2024年12月

     概要を見る

    In this study, we developed a new method of topology optimization for truss structures by quantum annealing. To perform quantum annealing analysis with real variables, representation of real numbers as a sum of random number combinations is employed. The nodal displacement is expressed with binary variables. The Hamiltonian H is formulated on the basis of the elastic strain energy and position energy of a truss structure. It is confirmed that truss deformation analysis is possible by quantum annealing. For the analysis of the optimization method for the truss structure, the cross-sectional area of the truss is expressed with binary variables. The iterative calculation for the changes in displacement and cross-sectional area leads to the optimal structure under the prescribed boundary conditions.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

総説・解説等 【 表示 / 非表示

  • イジングマシン技術の研究開発動向

    田中 宗

    技術解説書「拡大する量子コンピューティング その社会実装ポテンシャル」 (モバイルコンピューティング推進コンソーシアム(MCPC))   2020年03月

    記事・総説・解説・論説等(その他), 単著

  • イジングマシンの動作原理と応用探索の最新動向

    田中 宗,松田 佳希

    表面と真空 63   96 - 103 2020年

    記事・総説・解説・論説等(学術雑誌), 共著

  • 量子アニーリングや関連技術のいまと未来:AQC2019 参加報告

    田中 宗,白井 達彦,藤井 啓祐

    日本物理学会誌 75 ( 5 ) 299 - 302 2020年

    記事・総説・解説・論説等(学術雑誌), 共著

  • 量子アニーリングの応用探索

    田中 宗,西村 直樹,棚橋 耕太郎

    数理科学 2019年7月号 673   47 - 53 2019年07月

    記事・総説・解説・論説等(学術雑誌), 共著

  • イジングマシンに関係するソフトウェア開発およびアプリケーション探索動向

    田中 宗

    量子コンピュータ/イジング型コンピュータ研究開発最前線 〜基礎原理・最新技術動向・実用化に向けた企業の取り組み〜 (情報機構)   2019年02月

    記事・総説・解説・論説等(商業誌、新聞、ウェブメディア), 単著

全件表示 >>

研究発表 【 表示 / 非表示

  • イジングマシンを用いたアミューズメントパークの経路最適化手法

    武笠 陽介、若泉 朋弥、田中 宗、戸川 望

    VLSI設計技術研究会, 

    2020年03月

    口頭発表(一般)

  • イジング計算機による3次元直方体パッキング問題の解法

    金丸 翔、寺田 晃太朗、川村 一志、田中 宗、富田 憲範、戸川 望

    VLSI設計技術研究会, 

    2020年03月

    口頭発表(一般)

  • 3 次元直方体パッキング問題のQUBOモデルマッピング

    金丸 翔、寺田 晃太朗、川村 一志、田中 宗、富田 憲範、戸川 望

    2020年電子情報通信学会総合大会, 

    2020年03月

    口頭発表(一般)

  • Quantum Annealing Accelerates Materials Discovery

    Shu Tanaka

    MANA International Symposium 2020 Jointly with ICYS, 

    2020年03月

    口頭発表(招待・特別)

  • イジングマシン分野の研究開発の現状と今後 〜ハード・ソフト・アプリケーション・理論〜

    田中 宗、戸川 望

    2020年電子情報通信学会総合大会 依頼シンポジウムセッション「組合せ最適化専用イジングマシン周辺技術の現状と展望」, 

    2020年03月

    口頭発表(招待・特別)

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 多段階最適化のための量子・古典ハイブリッド基本アルゴリズムの構築と評価

    2023年12月
    -
    2028年03月

    文部科学省・量子科学技術研究開発機構, 戦略的イノベーション創造プログラム(SIP), 田中 宗, 研究代表者

  • 量子・AIハイブリッド技術の活用を加速する共通ライブラリ基盤の研究開発

    2023年06月
    -
    2026年03月

    経済産業省・国立研究開発法人 新エネルギー・産業技術総合開発機構, NEDO, 田中 宗, 研究代表者

  • 負性インダクタンスと熱ゆらぎを積極利用した複雑な最適化問題を解く量子アニーリング

    2023年04月
    -
    2028年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 田中 宗, 基盤研究(S), 補助金,  研究分担者

  • 量子人材を創出するエコシステムづくり

    2023年04月
    -
    2026年03月

    文部科学省, Q-LEAP, 田中 宗, 研究分担者

  • 量子・古典ハイブリッドテストベッド構築のための課題要件調査

    2022年09月
    -
    2023年01月

    文部科学省・量子科学技術研究開発機構, 田中 宗, 研究分担者

全件表示 >>

受賞 【 表示 / 非表示

  • 第9回日本物理学会若手奨励賞(領域11)

    田中 宗, 2015年03月, 日本物理学会, 二次元量子多体系におけるエンタングルメントの研究

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 東京大学大学院理学系研究科研究奨励賞(博士)

    田中 宗, 2008年03月, 東京大学大学院理学系研究科

    受賞区分: その他

 

担当授業科目 【 表示 / 非表示

  • 量子コンピューティング

    2025年度

  • プレゼンテーション技法

    2025年度

  • 自然科学実験

    2025年度

  • 基礎理工学課題研究

    2025年度

  • 基礎理工学特別研究第2

    2025年度

全件表示 >>

担当経験のある授業科目 【 表示 / 非表示

  • ディジタルシステム設計

    早稲田大学基幹理工学部

    2019年04月
    -
    2020年03月

    秋学期, 講義, 兼担

  • オムニバス講義

    お茶の水女子大学

    2019年04月
    -
    2020年03月

    秋学期, 講義, 兼担

  • ディジタルシステム設計

    早稲田大学基幹理工学部

    2018年04月
    -
    2019年03月

    秋学期, 講義, 兼担

  • 物理学実験

    芝浦工業大学通信工学科

    2017年04月
    -
    2018年03月

    実習・実験, 兼担

  • Exercises for Fundamental Physics B IPSE Course

    早稲田大学先進理工学部

    2017年04月
    -
    2018年03月

    秋学期, 演習

全件表示 >>

 

社会活動 【 表示 / 非表示

  • 平成30年度第7回生徒研究成果合同発表会助言員

    科学技術振興機構スーパーサイエンスハイスクール事業, 平成30年度第7回生徒研究成果合同発表会, 

    2019年02月
  • 平成29年度第6回生徒研究成果合同発表会助言員

    科学技術振興機構スーパーサイエンスハイスクール事業, 平成29年度第6回生徒研究成果合同発表会, 

    2018年02月
  • 平成28年度第5回生徒研究成果合同発表会助言員

    科学技術振興機構スーパーサイエンスハイスクール事業, 平成28年度第5回生徒研究成果合同発表会, 

    2017年02月
  • サイエンスキャッスル2016関東大会口頭講演審査員

    株式会社リバネス, サイエンスキャッスル2016関東大会, 

    2016年12月

所属学協会 【 表示 / 非表示

  • IEEE, 

    2024年05月
    -
    継続中
  • 情報処理学会, 

    2020年04月
    -
    継続中
  • 日本物理学会, 

    2003年12月
    -
    継続中

委員歴 【 表示 / 非表示

  • 2024年07月
    -
    継続中

    Adiabatic Quantum Computing Conference, Conference series steering committee

  • 2024年04月
    -
    継続中

    情報処理学会量子ソフトウェア研究会専門委員

  • 2023年06月
    -
    継続中

    量子ICTフォーラム量子コンピューティング技術推進委員会 技術担当理事(業務執行理事)

  • 2021年04月
    -
    継続中

    Journal of the Physical Society of Japan(JPSJ)第77期編集委員

  • 2020年12月
    -
    2021年06月

    Adiabatic Quantum Computing Conference 2021 (AQC2021) local organizer

全件表示 >>