TANAKA Shu

写真a

Affiliation

Faculty of Science and Technology, Department of Applied Physics and Physico-Informatics (Yagami)

Position

Professor

Related Websites

Contact Address

26-604C

Telephone No.

+81-45-566-1609

External Links

Other Affiliation 【 Display / hide

  • サスティナブル量子AI研究センター, Chair

  • Keio University Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Core Director

  • Keio University Quantum Computing Center, KQCC Researcher

Career 【 Display / hide

  • 2008.04
    -
    2010.03

    The University of Tokyo, Institute of Solid State Physics, Postdoctoral fellow

  • 2010.04
    -
    2011.03

    Kindai University, Quantum Computing Center, 博士研究員

  • 2011.04
    -
    2014.03

    The University of Tokyo, Department of Chemistry, Research Fellowship for Young Scientists, Japan Society for the Promotion of Science

  • 2014.04
    -
    2015.03

    Kyoto University, Yukawa Institute for Theoretical Physics, Postdoctoral Fellow (Yukawa Fellow)

  • 2014.10
    -
    2015.01

    Kyoto University, Faculty of Integrated Human Studies, Part-time Lecturer

display all >>

Academic Background 【 Display / hide

  • 1999.04
    -
    2003.03

    Tokyo Institute of Technology, School of Science, Department of Physics

    University, Graduated

  • 2003.04
    -
    2005.03

    The University of Tokyo, School of Science, Department of Physics

    Graduate School, Completed, Master's course

  • 2005.04
    -
    2008.03

    The University of Tokyo, School of Science, Department of Physics

    Graduate School, Completed, Doctoral course

Academic Degrees 【 Display / hide

  • Ph. D, The University of Tokyo, Coursework, 2008.03

    Slow Dynamics in Frustrated Magnetic Systems

 

Research Areas 【 Display / hide

  • Natural Science / Mathematical physics and fundamental theory of condensed matter physics

Research Keywords 【 Display / hide

  • 量子アニーリング

  • イジングマシン

  • 物性理論

  • 統計力学

  • 計算物理学

Research Themes 【 Display / hide

  • Quantum annealing, Ising machine, 

    2006
    -
    Present

     View Summary

    量子アニーリング等イジングマシンのハードウェア開発やソフトウェア・内部アルゴリズム開発につながる基礎研究や、量子アニーリング等イジングマシンの有効なアプリケーションを探る応用研究を、多くの企業や大学、研究所の方々と緊密に連携しながら行っております。

Proposed Theme of Joint Research 【 Display / hide

  • 量子アニーリング等イジングマシンの有効なアプリケーション探索

    Interested in joint research with industry (including private organizations, etc.),  Desired form: Technical Consultation, Funded Research, Cooperative Research

  • 量子アニーリング等イジングマシンのソフトウェア開発につながる基礎研究

    Interested in joint research with industry (including private organizations, etc.),  Desired form: Technical Consultation, Funded Research, Cooperative Research

  • 量子アニーリング等イジングマシンのハードウェア開発につながる基礎研究

    Interested in joint research with industry (including private organizations, etc.),  Desired form: Technical Consultation, Funded Research, Cooperative Research

 

Books 【 Display / hide

Papers 【 Display / hide

  • Machine Learning Supported Annealing for Prediction of Grand Canonical Crystal Structures

    Couzinié Y., Seki Y., Nishiya Y., Nishi H., Kosugi T., Tanaka S., Matsushita Y.I.

    Journal of the Physical Society of Japan 94 ( 4 )  2025.04

    ISSN  00319015

     View Summary

    This study investigates the application of Factorization Machines with Quantum Annealing (FMQA) to address the crystal structure problem (CSP) in materials science. FMQA is a black-box optimization algorithm that combines machine learning with annealing machines to find samples to a black-box function that minimize a given loss. The CSP involves determining the optimal arrangement of atoms in a material based on its chemical composition, a critical challenge in materials science. We explore FMQA’s ability to efficiently sample optimal crystal configurations by setting the loss function to the energy of the crystal configuration as given by a predefined interatomic potential. Further, we investigate how well the energies of the various metastable configurations, or local minima of the potential, are learned by the algorithm. Our investigation reveals FMQA’s potential in quick ground state sampling and in recovering relational order between local minima.

  • Formulation of Correction Term in QUBO Form for Phase-Field Model

    Aoki S., Endo K., Matsuda Y., Seki Y., Tanaka S., Muramatsu M.

    International Journal for Numerical Methods in Engineering 126 ( 6 )  2025.03

    ISSN  00295981

     View Summary

    In this study, we developed a method of estimating the correction terms that makes the Hamiltonian used in phase-field analysis by quantum annealing correspond to the free energy functional of the conventional phase-field analysis using the finite difference method. For the estimation of the correction terms, we employed a factorization machine. The inputs to the factorization machine were the phase-field variables in domain-wall encoding and the differences between the Gibbs free energy and Hamiltonian. We obtained the difference value in quadratic unconstrained binary optimization (QUBO) form as the output of learning using the factorization machine. The QUBO form difference was subjected to the original Hamiltonian as the correction term. The performance of this correction term was evaluated by calculating the energy for a equilibrium state of diblock copolymer. In phase-field analysis, the time evolution equation is formulated so that the total free energy decreases; hence, a lower the free energy means a more accurate result close to that of a conventional method. When we performed annealing with correction terms, the microstructure showed a Gibbs free energy that was lower than that obtained without the correction terms.

  • Advantages of Fixing Spins in Quantum Annealing

    Hattori T., Irie H., Kadowaki T., Tanaka S.

    Journal of the Physical Society of Japan 94 ( 1 )  2025.01

    ISSN  00319015

     View Summary

    Quantum annealing can efficiently obtain solutions to combinatorial optimization problems. Size-reduction methods are used to treat large-scale combinatorial optimization problems that cannot be input directly into a quantum annealer because of its size limitation. Various size-reduction methods using fixing spins have been proposed as quantum-classical hybrid methods to obtain solutions. However, the high performance of these hybrid methods is yet to be clearly elucidated. In this study, we adopted a parameterized fixing spins method to verify the effects of fixing spins. The results revealed that setting the appropriate number of spins of the subproblem is crucial for obtaining a satisfactory solution, and the energy gap expansion is confirmed after fixing spins.

  • Inductive Construction of Variational Quantum Circuit for Constrained Combinatorial Optimization

    Nakada H., Tanahashi K., Tanaka S.

    IEEE Access 13   73096 - 73108 2025

     View Summary

    In this study, we propose a new method for constrained combinatorial optimization using variational quantum circuits. Quantum computers are considered to have the potential to solve large combinatorial optimization problems faster than classical computers. Variational quantum algorithms, such as Variational Quantum Eigensolver (VQE), have been studied extensively because they are expected to work on noisy intermediate scale devices. Unfortunately, many optimization problems have constraints, which induces infeasible solutions during VQE process. Recently, several methods for efficiently solving constrained combinatorial optimization problems have been proposed by designing a quantum circuit so as to output only the states that satisfy the constraints. However, the types of available constraints are still limited. Therefore, we have started to develop variational quantum circuits that can handle a wider range of constraints. The proposed method utilizes a forwarding operation that maps from feasible states for subproblems to those for larger subproblems. As long as appropriate forwarding operations can be defined, iteration of this process can inductively construct variational circuits outputting feasible states even in the case of multiple and complex constraints. In this paper, the proposed method was applied to facility location problem. As a result, feasible solutions were obtained with 100%, and the probability of obtaining optimal solutions was over 22 times higher than that of conventional VQEs. Nevertheless, the cost of the obtained circuit was comparable to that of conventional circuits.

  • Development of optimization method for truss structure by quantum annealing

    Honda R., Endo K., Kaji T., Suzuki Y., Matsuda Y., Tanaka S., Muramatsu M.

    Scientific Reports 14 ( 1 )  2024.12

     View Summary

    In this study, we developed a new method of topology optimization for truss structures by quantum annealing. To perform quantum annealing analysis with real variables, representation of real numbers as a sum of random number combinations is employed. The nodal displacement is expressed with binary variables. The Hamiltonian H is formulated on the basis of the elastic strain energy and position energy of a truss structure. It is confirmed that truss deformation analysis is possible by quantum annealing. For the analysis of the optimization method for the truss structure, the cross-sectional area of the truss is expressed with binary variables. The iterative calculation for the changes in displacement and cross-sectional area leads to the optimal structure under the prescribed boundary conditions.

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • イジングマシン技術の研究開発動向

    田中 宗

    技術解説書「拡大する量子コンピューティング その社会実装ポテンシャル」 (モバイルコンピューティング推進コンソーシアム(MCPC))   2020.03

    Article, review, commentary, editorial, etc. (other), Single Work

  • イジングマシンの動作原理と応用探索の最新動向

    田中 宗,松田 佳希

    表面と真空 63   96 - 103 2020

    Article, review, commentary, editorial, etc. (scientific journal), Joint Work

  • 量子アニーリングや関連技術のいまと未来:AQC2019 参加報告

    田中 宗,白井 達彦,藤井 啓祐

    日本物理学会誌 75 ( 5 ) 299 - 302 2020

    Article, review, commentary, editorial, etc. (scientific journal), Joint Work

  • 量子アニーリングの応用探索

    田中 宗,西村 直樹,棚橋 耕太郎

    数理科学 2019年7月号 673   47 - 53 2019.07

    Article, review, commentary, editorial, etc. (scientific journal), Joint Work

  • イジングマシンに関係するソフトウェア開発およびアプリケーション探索動向

    田中 宗

    量子コンピュータ/イジング型コンピュータ研究開発最前線 〜基礎原理・最新技術動向・実用化に向けた企業の取り組み〜 (情報機構)   2019.02

    Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media), Single Work

display all >>

Presentations 【 Display / hide

  • イジングマシンを用いたアミューズメントパークの経路最適化手法

    武笠 陽介、若泉 朋弥、田中 宗、戸川 望

    VLSI設計技術研究会, 

    2020.03

    Oral presentation (general)

  • イジング計算機による3次元直方体パッキング問題の解法

    金丸 翔、寺田 晃太朗、川村 一志、田中 宗、富田 憲範、戸川 望

    VLSI設計技術研究会, 

    2020.03

    Oral presentation (general)

  • 3 次元直方体パッキング問題のQUBOモデルマッピング

    金丸 翔、寺田 晃太朗、川村 一志、田中 宗、富田 憲範、戸川 望

    2020年電子情報通信学会総合大会, 

    2020.03

    Oral presentation (general)

  • Quantum Annealing Accelerates Materials Discovery

    Shu Tanaka

    MANA International Symposium 2020 Jointly with ICYS, 

    2020.03

    Oral presentation (invited, special)

  • イジングマシン分野の研究開発の現状と今後 〜ハード・ソフト・アプリケーション・理論〜

    田中 宗、戸川 望

    2020年電子情報通信学会総合大会 依頼シンポジウムセッション「組合せ最適化専用イジングマシン周辺技術の現状と展望」, 

    2020.03

    Oral presentation (invited, special)

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • 多段階最適化のための量子・古典ハイブリッド基本アルゴリズムの構築と評価

    2023.12
    -
    2028.03

    文部科学省・量子科学技術研究開発機構, 戦略的イノベーション創造プログラム(SIP), Principal investigator

  • 量子・AIハイブリッド技術の活用を加速する共通ライブラリ基盤の研究開発

    2023.06
    -
    2026.03

    経済産業省・国立研究開発法人 新エネルギー・産業技術総合開発機構, NEDO, Principal investigator

  • 負性インダクタンスと熱ゆらぎを積極利用した複雑な最適化問題を解く量子アニーリング

    2023.04
    -
    2028.03

    MEXT,JSPS, Grant-in-Aid for Scientific Research, 基盤研究(S), Coinvestigator(s)

  • 量子人材を創出するエコシステムづくり

    2023.04
    -
    2026.03

    文部科学省, Q-LEAP, Coinvestigator(s)

  • 量子・古典ハイブリッドテストベッド構築のための課題要件調査

    2022.09
    -
    2023.01

    文部科学省・量子科学技術研究開発機構, Coinvestigator(s)

display all >>

Awards 【 Display / hide

  • 第9回日本物理学会若手奨励賞(領域11)

    田中 宗, 2015.03, 日本物理学会, 二次元量子多体系におけるエンタングルメントの研究

    Type of Award: Award from Japanese society, conference, symposium, etc.

  • 東京大学大学院理学系研究科研究奨励賞(博士)

    田中 宗, 2008.03, 東京大学大学院理学系研究科

    Type of Award: Other

 

Courses Taught 【 Display / hide

  • QUANTUM COMPUTING

    2025

  • PRESENTATION TECHNIQUE

    2025

  • LABORATORY IN SCIENCE

    2025

  • INDEPENDENT STUDY ON FUNDAMENTAL SCIENCE AND TECHNOLOGY

    2025

  • GRADUATE RESEARCH ON FUNDAMENTAL SCIENCE AND TECHNOLOGY 2

    2025

display all >>

Courses Previously Taught 【 Display / hide

  • ディジタルシステム設計

    早稲田大学基幹理工学部

    2019.04
    -
    2020.03

    Autumn Semester, Lecture, Lecturer outside of Keio

  • オムニバス講義

    お茶の水女子大学

    2019.04
    -
    2020.03

    Autumn Semester, Lecture, Lecturer outside of Keio

  • ディジタルシステム設計

    早稲田大学基幹理工学部

    2018.04
    -
    2019.03

    Autumn Semester, Lecture, Lecturer outside of Keio

  • 物理学実験

    芝浦工業大学通信工学科

    2017.04
    -
    2018.03

    Laboratory work/practical work/exercise, Lecturer outside of Keio

  • Exercises for Fundamental Physics B IPSE Course

    早稲田大学先進理工学部

    2017.04
    -
    2018.03

    Autumn Semester, Seminar

display all >>

 

Social Activities 【 Display / hide

  • 平成30年度第7回生徒研究成果合同発表会助言員

    科学技術振興機構スーパーサイエンスハイスクール事業, 平成30年度第7回生徒研究成果合同発表会, 

    2019.02
  • 平成29年度第6回生徒研究成果合同発表会助言員

    科学技術振興機構スーパーサイエンスハイスクール事業, 平成29年度第6回生徒研究成果合同発表会, 

    2018.02
  • 平成28年度第5回生徒研究成果合同発表会助言員

    科学技術振興機構スーパーサイエンスハイスクール事業, 平成28年度第5回生徒研究成果合同発表会, 

    2017.02
  • サイエンスキャッスル2016関東大会口頭講演審査員

    株式会社リバネス, サイエンスキャッスル2016関東大会, 

    2016.12

Memberships in Academic Societies 【 Display / hide

  • IEEE, 

    2024.05
    -
    Present
  • 情報処理学会, 

    2020.04
    -
    Present
  • 日本物理学会, 

    2003.12
    -
    Present

Committee Experiences 【 Display / hide

  • 2024.07
    -
    Present

    Adiabatic Quantum Computing Conference, Conference series steering committee

  • 2024.04
    -
    Present

    情報処理学会量子ソフトウェア研究会専門委員

  • 2023.06
    -
    Present

    量子ICTフォーラム量子コンピューティング技術推進委員会 技術担当理事(業務執行理事)

  • 2021.04
    -
    Present

    Journal of the Physical Society of Japan(JPSJ)第77期編集委員

  • 2020.12
    -
    2021.06

    Adiabatic Quantum Computing Conference 2021 (AQC2021) local organizer

display all >>