嘉副 裕 (カゾエ ユタカ)

Kazoe, Yutaka

写真a

所属(所属キャンパス)

理工学部 システムデザイン工学科 (矢上)

職名

准教授

 

著書 【 表示 / 非表示

  • マイクロ・ナノ熱工学の進展, 第4章 マイクロチャネル(1)流れの特性

    嘉副裕, エヌ・ティー・エス, 2021年05月

  • Extended-Nano Scale Fluidics and Applications to Bioanalysis, in "Intelligent Nanosystems for Energy, Information and Biological Technologies"

    Hisashi Shimizu, Kazuma Mawatari, Yutaka Kazoe, Yuriy Pihosh, Takehiko Kitamori, Springer, 2016年

    担当範囲: pp. 65-84

  • Micro and extended-nano fluidics and optics for chemical and bioanalytical technology, in “Progress in Nanophotonics 2” Ed. Motoichi Ohtsu

    Kazuma Mawatari, Yuriy Pihosh, Hisashi Shimizu, Yutaka Kazoe, Takehiko Kitamori, Springer-Verlag Berlin Heidelberg, 2013年

  • Extended-nano fluidic systems for chemistry and biotechnology

    Kazuma Mawatari, Takehiko Tsukahara, Yo Tanaka, Yutaka Kazoe, Philip Dextras, Takehiko Kitamori, Imperial College Press, 2011年

論文 【 表示 / 非表示

  • Motion of submicrometer particles in micrometer-size channel measured by defocusing nano-particle image velocimetry

    Kuwano Y., Tanaka M., Kazoe Y.

    Journal of Applied Physics (Journal of Applied Physics)  131 ( 10 )  2022年03月

    査読有り,  ISSN  00218979

     概要を見る

    Understanding the motion of colloidal particles flowing in small spaces is a general issue in various fields such as thermal engineering and micro/nanofluidics. In the present study, we investigated the motion of fluorescent submicrometer particles in a 3-μm microchannel by defocusing nanoparticle image velocimetry. An optical measurement system with controlled spherical aberration and an algorithm for processing defocused particle images with multiple diffraction rings were developed. By detecting the centroid position and the diameter of the outermost diffraction ring, which is proportional to the distance between the focal plane and the particle, the position of particles was determined with the spatial resolutions of 154-204 nm in the streamwise direction and 76-311 nm in the depthwise direction, which are comparable to or smaller than the optical diffraction limit. A reusable microfluidic device containing a size-regulated microchannel made of glass was developed, which is suitable for optical measurements and precise flow control. By controlling the strength of low-temperature glass bonding, detachment of the bonded glass substrates, washing, and reuse were achieved. Based on this method and technology, the velocity of particles with diameters of 199, 457, and 1114 nm was successfully measured in pressure-driven laminar flow. Results suggested that for larger particles comparable to the channel size, the particle velocity is slowed from the flow velocity by particle-wall hydrodynamic interactions. Therefore, the motion of colloidal particles in 100-μm spaces is considered to be affected by particle-wall hydrodynamic interactions, as well as 102-μm spaces reported previously.

  • Characterization of Pressure-Driven Water Flows in Nanofluidic Channels by Mass Flowmetry

    Yutaka KAZOE, Sho KUBORI, Kyojiro MORIKAWA, Kazuma MAWATARI, Takehiko KITAMORI

    Analytical Sciences (Springer Science and Business Media LLC)  38   281 - 287 2022年03月

    査読有り,  ISSN  0910-6340

  • Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry

    Kazoe Y., Kubori S., Morikawa K., Mawatari K., Kitamori T.

    Analytical sciences : the international journal of the Japan Society for Analytical Chemistry (Analytical sciences : the international journal of the Japan Society for Analytical Chemistry)  38 ( 2 ) 281 - 287 2022年02月

     概要を見る

    With developments in analytical devices promoted by nanofluidics, estimation of the flow rate in a nanochannel has become important to calculate volumes of samples and reagents in chemical processing. However, measurement of the flow rate in nanospaces remains challenging. In the present study, a mass flowmetry system was developed, and the flow rate of water by pressure-driven flow in a fused-silica nanochannel was successfully measured in picoliters per second. We revealed that the water flow rate is dependent on the viscosity significantly increased in a square nanochannel with 102 nm width and depth (3.6 times higher than the bulk viscosity for a representative channel size of 190 nm) and slightly increased in a plate nanochannel with micrometer-scale width and 102 nm depth (1.3 times higher for that of 234 nm), because of dominant surface effects. The developed method and results obtained will greatly contribute to nanofluidics and other related fields.

  • Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry.

    Kazoe Y, Kubori S, Morikawa K, Mawatari K, Kitamori T

    Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 38 ( 2 ) 281 - 287 2022年02月

    ISSN  0910-6340

  • Picoliter liquid handling at gas/liquid interface by surface and geometry control in a micro-nanofluidic device

    Morikawa K., Murata S.I., Kazoe Y., Mawatari K., Kitamori T.

    Journal of Micromechanics and Microengineering (Journal of Micromechanics and Microengineering)  32 ( 2 )  2022年02月

    査読有り,  ISSN  09601317

     概要を見る

    In micro- and nanofluidic devices, highly precise fluidic control is essential. Conventional mechanical valves in microchannels and nanochannels have size limitations, whereas hydrophobic (Laplace) valves are generally difficult to use for low-surface-tension liquids. In the present study, we developed a method for handling picoliter volumes of low-surface-tension liquids in a micro-nanofluidic device. The proposed Laplace valve is based on the pinning effect. A fused silica micro-nanofluidic device that includes a picoliter chamber whose geometry was designed to induce capillary pinning was designed and fabricated. The measured Laplace pressure of a lysis buffer (surfactant) was consistent with the calculated pressure, indicating successful fabrication and hydrophobic surface modification. The working principle of the Laplace valve was verified. The Laplace valve maintained the lysis buffer at the gas/liquid interface for 60 min, which is sufficiently long for cell lysis operations. Finally, replacement of liquids in the picoliter chamber using the valve was demonstrated. The proposed method will contribute to basic technologies for fluidic control in micro- and nanofluidic devices, and the proposed Laplace valve can be used for low-surface-tension liquids. In addition, the developed valve and picoliter chamber can be utilized for the interface in single-cell lysis, which will facilitate the development of single-cell analysis devices.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

総説・解説等 【 表示 / 非表示

研究発表 【 表示 / 非表示

  • Femtoliter-droplet shooter by gas/liquid nanofluidics for an interface of mass spectrometry

    Yutaka Kazoe

    The 17th IEEE International Conference on Nano/Micro Engineered & Molecular Systems (IEEE-NEMS 2022), 

    2022年04月

  • ナノ流体工学による超高感度1分子分析技術の開発

    嘉副裕

    第5回Skin Disease Research Conference, 

    2022年03月

  • 部分疎水修飾マイクロ流路での油水平行二相流を用いた脂質二重膜合成法の開発

    竹添直之, 嘉副裕

    4大学ナノ・マイクロファブリケーションコンソーシアム・シンポジウム, 

    2022年02月

  • 1粒子輸送に向けたナノ流路における微小液滴生成法の開発

    大穂亮介, 嘉副裕

    第12回マイクロ・ナノ工学シンポジウム, 

    2021年11月

  • 部分疎水修飾マイクロ流路での油水平行二相流操作による脂質二重膜合成法の開発

    竹添直之, 嘉副裕

    化学とマイクロ・ナノシステム学会第44回研究会, 

    2021年11月

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 光散乱を用いたナノ空間の非蛍光1粒子超解像度3次元追跡法の開発

    2022年04月
    -
    2026年03月

    科学研究費助成事業, 嘉副 裕, 基盤研究(A), 未設定

     研究概要を見る

    10-100 nmのナノ空間の流体科学・工学の進展に伴い、表面支配の極小空間における溶質分子輸送現象の解明が重要となっている。本研究では、独自の技術と方法論に基づき光散乱を用いたナノ空間非蛍光ナノ粒子の超解像度追跡法を創成することを目的とする。サイズと表面粗さを1 nm以下の精度で制御したガラス製ナノ流路を作製して、バックグラウンド光を極限まで低減して光学的に整えた条件下で、ナノ粒子の散乱光と流路壁面からの反射光との干渉により形成される粒子像を高速・高感度に検出し、位相差に伴う粒子像変化からナノ空間を流れる非蛍光ナノ粒子の位置をx, y, zの3方向で10 nm分解能で測定する。

  • ナノ空間極小液滴操作による1分子化学処理法の開発とサイトカイン1分子分析への応用

    2021年07月
    -
    2025年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 嘉副 裕, 挑戦的研究(開拓), 補助金,  研究代表者

     研究概要を見る

    ナノ空間の流体工学の進展により、化学分析の可算個分子レベルへの超微量化が実現しつつある。しかし、試料分子数が限定されても、空間の微小化の単なる延長では流体工学の極限である分子1個の輸送・化学処理とこれにより初めて実現する1分子分析には到達できない。本研究では、独自技術によりナノ流路で極小液滴を生成して、統計力学の原理により液滴中に試料分子1個を閉じ込め個数の単位で配列・輸送、更に液滴の合一により1分子を衝突・反応させる方法論とこれを用いた分析法を創成し、病変部の表皮角化細胞、涙液、汗などに含まれるサイトカイン分析に応用することを目的とする。

  • ナノ空間平行二相流を活用した細胞膜組込ナノ流体デバイス作製法の開発

    2019年06月
    -
    2021年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 嘉副 裕, 挑戦的研究(萌芽), 補助金,  研究代表者

     研究概要を見る

    ナノ流体工学が進展し化学分離・分析法の超高機能化が実現しつつある。一方、同スケールの細胞・小胞は既存の化学の方法ではできない多種多様な機能を有しており、その中の細胞膜と膜タンパクは様々な分子種の超高選択的輸送や濃度勾配を逆行する能動輸送など特異的な役割を担う。そこで代表者は、細胞膜と膜タンパクをナノ流路に組込み機能を再現すれば、既存の化学の延長でない新しいナノ流体機能デバイスを創成でき、夾雑物からの超高選択的分離、簡易迅速薬物モニタリング、人工細胞/小胞システムなどを実現できると着想した。そこで本研究では、独自のナノ流路油水平行二相流形成技術を活用したナノスケール脂質二重膜組込技術を開発する。

  • 非焦点粒子像と光干渉を用いたナノ空間3次元3成分超解像度流速分布計測法の開発

    2019年04月
    -
    2022年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 嘉副 裕、花崎 逸雄, 基盤研究(B), 補助金,  研究代表者

     研究概要を見る

    流体工学が光の波長より小さいナノ空間へと進展している。しかし、空間が幅・深さ数100 nm以下になると液体の物性変化など様々な特異的現象が発現するため、この空間の物質輸送を明らかにする超解像度(10 nm分解能)の流速分布計測が重要となる。流速分布計測法としては粒子画像流速計(PIV)が一般的であるが、(x, y, z)3方向に対して超解像度を実現することは極めて難しかった。そこで本研究では、レンズの結像で問題となる球面収差を積極活用・制御して、非焦点領域の粒子像からナノ粒子の位置を10 nm分解能で検出するデフォーカス・ナノPIVを開発する。

  • 拡張ナノ熱光学流体デバイスの創成と無標識一分子検出の実現

    2017年04月
    -
    2020年03月

    東京大学, 科学研究費助成事業, 北森 武彦、嘉副 裕, 森川 響二朗, 馬渡 和真, 清水 久史, 基盤研究(A), 未設定

     研究概要を見る

    本研究では、研究代表者ら独自の非蛍光分子検出法である光熱変換位相差(POPS)検出法により、100 nmの拡張ナノ空間で生体分子の無標識一分子検出を実現することを目的とする。具体的には、生体分子を対象とするUV励起型かつバックグラウンドフリー化のための光学系、及び熱拡散に伴う感度低下の抑制のため熱光学特性を制御した検出用拡張ナノ流路を開発して、これまで100分子レベルであった検出感度を更に2桁向上させる。以上により、単一・可算個分子を対象とする極限の分析化学を創成する。
    平成29年度は、UV励起型かつバックグラウンドフリー化のための光学系を開発した。POPS検出では、プローブ光を微分干渉プリズムにより分離して干渉させることで光の波長以下の拡張ナノ空間で試料分子から放出される熱に伴う屈折率変化を検出する。これまでの光学系では、プローブ光だけでなく励起光も微分干渉プリズムを通過する構造であった。しかし、これをUV励起型にするとプリズムにおける紫外励起光の透過性と可視プローブ光の干渉性の両立が困難であり、検出における感度低下の要因となっていた。そこで、励起光とプローブ光の光路を独立化させた光学系を開発することで、UV励起型でもプローブ光の高精度の干渉を実現した。これにより、干渉によるバックグラウンド低減率が従来よりも5倍高い消光比1/340を達成した。これは従来光学系によるUV励起型POPSよりも感度が桁で高い検出が可能であることを意味している。今後、新たに開発した光学系を用いて生体分子の検出性能の評価に取り組む。
    当初研究計画通りにUV励起型POPSにおける光学系の問題を解決してプローブ光干渉の性能向上を実現しているため。
    今年度開発した光学系を用いて励起光強度の増強とノイズ低減に取り組み検出性能を評価する。一方、検出に用いる拡張ナノ流路への断熱部への組込などによる流路の熱光学特性の制御にも着手する。

全件表示 >>

 

担当授業科目 【 表示 / 非表示

  • システムデザイン工学輪講

    2023年度

  • 学外実習

    2023年度

  • システム計測

    2023年度

  • 理工学基礎実験

    2023年度

  • システムデザイン工学概論

    2023年度

全件表示 >>