Nakazawa, Yosuke

写真a

Affiliation

Faculty of Pharmacy, Department of Pharmacy 衛生化学講座 (Shiba-Kyoritsu)

Position

Assistant Professor/Senior Assistant Professor

E-mail Address

E-mail address

Career 【 Display / hide

  • 2005.04
    -
    2009.03

    Faculity of pahrmacy, setsunan university, 助手

  • 2009.04
    -
    2012.03

    慶應義塾大学薬学部, 助手

  • 2012.04
    -
    2019.03

    慶應義塾大学薬学部, 助教

  • 2016.09
    -
    2017.08

    The University of Auckland, Faculty of Medical and Health Sciences, Visiting Researcher

  • 2019.04
    -
    Present

    Fuculty of Pharmacy, Keio University, Senior Lecturer

Licenses and Qualifications 【 Display / hide

  • 薬剤師, 2003.04

  • 健康食品管理士, 2019.01

 
 

Papers 【 Display / hide

  • Development of sustained-release ophthalmic formulation based on tranilast solid nanoparticles

    Minami M., Seiriki R., Otake H., Nakazawa Y., Kanai K., Tanino T., Nagai N.

    Materials (Materials)  13 ( 7 )  2020.04

     View Summary

    © 2020 by the authors. Eye drops containing Tranilast (TL), N-(3,4-dimethoxycinnamoyl) anthramilic acid, are used as an anti-allergic conjunctivitis drug in the ophthalmic field. Traditional eye drops are very patient compliant, although the bioavailability (BA) of most eye drops is low since eye drops cannot be instilled beyond the capacity of the conjunctival sac due to its limited volume. Thus, traditional eye drops have low BA and a short duration of the drug on the ocular surface, so solutions to these problems are highly anticipated. In this study, we designed a sustained-release drug-delivery system (DDS) for TL nanoparticles. TL nanoparticles were prepared by bead mill treatment, and the gel formulations containing TL nanoparticles (TL-NPs-Gel, particle size 50 nm-100 nm) were provided by carboxypolymethylene. The crystal structure of TL with and without bead mill treatment is the same, but the TL solubility in formulations containing nanoparticles was 5.3-fold higher compared with gel formulations containing TL microparticles (TL-MPs-Gel). The photo and thermal stabilities of TL-NPs-Gel are also higher than those of dissolved TL. Moreover, when TL-NPs-Gel is applied to the upper eyelid skin (outside), the TL is released as nanoparticles, and delivered to the lacrimal fluid through the meibomian glands. In addition, the TL release profile for TL-NPs-Gel was sustained over 180 min after the treatment. These findings can be used to develop a sustained-release DDS in the ophthalmic field.

  • Aquaporin 0A is Required for Water Homeostasis in the Zebrafish Lens In Vivo

    Irene Vorontsova, Alexander Vallmitjana, Yosuke Nakazawa, Belén Torrado, Thomas Schilling, James E. Hall, Enrico Gratton, Leonel S.Malacrida

    Biophysical Journal (Cell Press)  118 ( 3 ) 167a - 167A 2020.02

    ISSN  0006-3495

  • Novel sustained‐release drug delivery system for dry eye therapy by rebamipide nanoparticles

    Nagai N., Ishii M., Seiriki R., Ogata F., Otake H., Nakazawa Y., Okamoto N., Kanai K., Kawasaki N.

    Pharmaceutics (Pharmaceutics)  12 ( 2 )  2020.02

     View Summary

    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The commercially available rebamipide ophthalmic suspension (CA‐REB) was approved for clinical use in patients with dry eye; however, the residence time on the ocular surface for the traditional formulations is short, since the drug is removed from the ocular surface through the nasolacrimal duct. In this study, we designed a novel sustained‐release drug delivery system (DDS) for dry eye therapy by rebamipide nanoparticles. The rebamipide solid nanoparticle‐based ophthalmic formulation (REB‐NPs) was prepared by a bead mill using additives (2‐hydroxypropyl-β‐cyclodextrin and methylcellulose) and a gel base (carbopol). The rebamipide particles formed are ellipsoid, with a particle size in the range of 40–200 nm. The rebamipide in the REB‐NPs applied to eyelids was delivered into the lacrimal fluid through the meibomian glands, and sustained drug release was observed in comparison with CA‐REB. Moreover, the REB‐NPs increased the mucin levels in the lacrimal fluid and healed tear film breakup levels in an N‐acetylcysteine‐treated rabbit model. The information about this novel DDS route and creation of a nano‐formulation can be used to design further studies aimed at therapy for dry eye.

  • Oral intake of α-glucosyl-hesperidin ameliorates selenite-induced cataract formation

    Nakazawa Y., Aoki M., Ishiwa S., Morishita N., Endo S., Nagai N., Yamamoto N., Funakoshi-Tago M., Tamura H.

    Molecular Medicine Reports (Molecular Medicine Reports)  21 ( 3 ) 1258 - 1266 2020

    ISSN  17912997

     View Summary

    © 2020 Spandidos Publications. All rights reserved. Hesperetin is a natural flavonoid with robust antioxidant properties. Our previous study reported that hesperetin can prevent cataract formation. However, an important consideration regarding hesperetin consumption is the limited bioavailability due to its poor solubility. The present study investigated the anti-cataract effects of α-glucosyl hesperidin in vivo and in vitro using a selenite-induced cataract model. SD rats (age, 13 days) were orally administered PBS (0.2 ml) or α-glucosyl hesperidin (200 mg/kg) on days 0, 1 and 2. Sodium selenite was subcutaneously administered to the rats 4 h after the first oral administration on day 0. Antioxidant levels in the lens and blood were measured on day 6. In vitro, human lens epithelial cells were treated with sodium selenite (10 μM) and/or hesperetin (50 or 100 mM) for 24 h and analyzed for apoptosis markers using sub-G1 population and Annexin V-FITC/propidium iodide staining and DNA ladder formation. α-glucosyl hesperidin treatment significantly reduced the severity of selenite-induced cataract. The level of antioxidants was significantly reduced in the selenite-treated rats compared with in the controls; however, they were normalized with α-glucosyl hesperidin treatment. In vitro, hesperetin could significantly reduce the number of cells undergoing apoptosis induced by sodium selenite in human lens epithelial cell lines. Overall, oral consumption of α-glucosyl hesperidin could delay the onset of selenite-induced cataract, at least in part by modulating the selenite-induced cell death in lens epithelial cells.

  • Combination with l-Menthol Enhances Transdermal Penetration of Indomethacin Solid Nanoparticles

    Nagai N, Ogata F, Yamaguchi M, Fukuoka Y, Otake H, Nakazawa Y, Kawasaki N.

    International Journal of Molecular Sciences (International journal of molecular sciences)  20 ( 15 ) 3644 - 3644 2019.07

    Research paper (scientific journal), Accepted,  ISSN  16616596

     View Summary

    This study designed the transdermal formulations containing indomethacin (IMC)-1% IMC was crushed with 0.5% methylcellulose and 5% 2-hydroxypropyl-β-cyclodextrin by the bead mill method, and the milled IMC was gelled with or without 2% l-menthol (a permeation enhancer) by Carbopol® 934 (without menthol, N-IMC gel; with menthol, N-IMC/MT gel). In addition, the drug release, skin penetration and percutaneous absorption of the N-IMC/MT gel were investigated. The particle sizes of N-IMC gel were approximately 50-200 nm, and the combination with l-menthol did not affect the particle characterization of the transdermal formulations. In an in vitro experiment using a Franz diffusion cell, the skin penetration in N-IMC/MT gel was enhanced than the N-IMC gel, and the percutaneous absorption (AUC) from the N-IMC/MT gel was 2-fold higher than the N-IMC gel. On the other hand, the skin penetration from the N-IMC/MT gel was remarkably attenuated at a 4 °C condition, a temperature that inhibits all energy-dependent endocytosis. In conclusion, this study designed transdermal formulations containing IMC solid nanoparticles and l-menthol, and found that the combination with l-menthol enhanced the skin penetration of the IMC solid nanoparticles. In addition, the energy-dependency of the skin penetration of IMC solid nanoparticles was demonstrated. These findings suggest the utility of a transdermal drug delivery system to provide the easy application of solid nanoparticles (SNPs).

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • フィレンシンによるアクアポリン0(AQP0)の機能解析.

    中澤洋介.

    日本白内障学会誌 (日本白内障学会)  26   28-29 2014.06

    Research paper, Single Work

  • 水晶体中のRNAの解析.

    岡 美佳子, 梅澤 和寛, 中澤 洋介, 竹鼻 眞.

    日本眼科学会雑誌 (日本眼科学会)  117(10)   826-826 2013.10

    Introduction and explanation (scientific journal), Joint Work

  • 水晶体線維細胞分化に伴う遺伝子発現の変化.

    梅澤 和寛, 岡 美佳子, 中澤 洋介, 竹鼻 眞.

    日本眼科学会雑誌 (日本眼科学会)  115(9)   848-848 2011.09

    Introduction and explanation (scientific journal), Joint Work

  • 糖尿病性白内障発症前後でのアスコルビン酸トランスポーターの発現解析.

    中澤洋介, 岡美佳子, 竹鼻眞.

    日本眼科学会雑誌 (日本眼科学会)  114   809-809 2010.09

    Introduction and explanation (scientific journal), Joint Work

Presentations 【 Display / hide

  • 水晶体透明性維持機構の解明と関連疾患予防の可能性

    中澤洋介

    日本薬学会 第140年会, 2020.03, Symposium, Workshop, Panelist (nomination)

  • Aquaporin 0a is required for water homeostasis in the zebrafish lens in vivo

    Irene Vorontsova, Alexander Vallmitjana, Yosuke Nakazawa, Belén Torrado, Thomas Schilling, James E. Hall, Enrico Gratton, Leonel S. Malacrida.

    Biophysical Society 2020, 64th Annual meeting of the Biophysical Society, 2020.02, Oral Presentation(general)

  • The subcellular localisation of AQP5: is it regulated by zonular tension and/or the activation of TRPV1 and 4 ion channels?

    Rosica S. Petrova, Nandini Bavana, Rusin Zhao, Yosuke Nakazawa, Kevin L. Schey, Paul J. Donaldson

    International Conference on the Lens 2019, 2019.12, Oral Presentation(general)

  • Aquaporin 0a is required for water homeostasis in the zebrafish lens in vivo

    Irene Vorontsova, Alexander Vallmitjana, Yosuke Nakazawa, Belén Torrado, Thomas F. Schilling, James E. Hall, Enrico Gratton, Leonel Malacrida,

    International Conference on the Lens 2019, 2019.12, Oral Presentation(general)

  • Pharmacological modulation and changes in osmolarity alter the subcellular distribution of TRPV1 and TRPV4 channels in the mouse lens

    Yosuke Nakazawa, Yuki Sughiyama, Rosica S. Petrova, Noriaki Nagai, Paul J. Donaldson, Hiroomi Tamura

    International Conference on the Lens 2019, 2019.12, Oral Presentation(general)

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • 老眼発症機序の解明とTRPVチャネルを標的とした抗老眼薬創製の基盤研究

    2020.04
    -
    2023.03

    文部科学省, 科学研究費補助金(文部科学省・日本学術振興会), Yosuke Nakazawa, Research grant, Principal Investigator

  • Roles for the mechanosensitive channels (TRPV1 and TRPV4) in the initiation of presb yopia and development of cataract

    2020.04
    -
    2022.03

    JSPS-NZRS, Bilateral joint research project between Japan and New Zealand, Yosuke Nakazawa, Research grant, Principal Investigator

  • 老眼発症遅延薬の開発を見据えて:老眼発症メカニズムの解明と老眼モデル動物の開発

    2018.09
    -
    2019.08

    Japan Health Foundation, Yosuke Nakazawa, Research grant, Principal Investigator

  • アクアポリン0およびアクアポリン5の機能解明とこれらを標的とした新規抗白内 障薬の創生

    2016.09
    -
    2017.08

    公益財団法人 持田記念医学薬学振興財団, Research grant

  • 新規白内障治療薬の開発を目指したアクアポリン0の機能解明

    2016.04
    -
    2018.03

    文部科学省, Grant-in-Aid for Scientific Research, Yosuke Nakazawa, Research grant, Principal Investigator

display all >>

Awards 【 Display / hide

  • 日本薬学会2019年度関東支部 奨励賞

    中澤洋介, 2019.09, 公益社団法人日本薬学会関東支部, 抗白内障薬/抗老眼薬の創製を見据えて:水晶体透明性維持機構の解明と疾患予防の基盤研究

    Type of Award: Awards of Publisher, Newspaper Company and Foundation.  Country: 日本

  • 日本白内障学会 学術賞

    中澤洋介, 2014.09, Japanese Society for Cataract Research, 水晶体のアクアポリン0の役割および機能に関する新しい知見

  • 2019年度 助成研究発表会 優秀賞

    2019.11, Japan Health Fundation

    Type of Award: Awards of National Conference, Council and Symposium

  • Imaging competion Winner 2019

    2019.07, Vector Laboratories社, lens E10 section

    Type of Award: Awards of Publisher, Newspaper Company and Foundation.  Country: CA, USA

  • Young Investigator Awards

    Yosuke Nakazawa, Rosica S. Petrova, Hiroomi Tamura, Paul J. Donaldson, 2017.12, National Foundation for Eye Research, The subcellular expression patterns of the mechano-sensitive channels TRPV1/4 in the mouse lens are modulated by changes in zonular tension

    Country: Kona, Hawaii

display all >>

Other 【 Display / hide

  • 日本薬学会 第140年会 一般シンポジウム オーガナイザー

    2020年03月

     View Details

    日本薬学会 第140年会
    一般シンポジウム オーガナイザー

    今いちど,眼科領域の進歩を考える ―基礎,臨床,そしてドラッグリポジショニングについて―

 

Courses Taught 【 Display / hide

  • STUDY OF MAJOR FIELD: (HYGIENIC CHEMISTRY)

    2020

  • SPECIAL PRACTICE IN TISSUE CULTURE AND GENE TECHNOLOGY

    2020

  • SEMINAR: (HYGIENIC CHEMISTRY)

    2020

  • RESEARCH FOR BACHELOR'S THESIS 1

    2020

  • RESEARCH APPARATUS LABORATORY COURSE

    2020

display all >>

 

Committee Experiences 【 Display / hide

  • 2018.07

    大会長, 第44回 水晶体研究会 

  • 2018.07
    -
    Present

    白内障学会誌 副編集委員長, 日本白内障学会

  • 2012.06
    -
    Present

    世話人, 水晶体研究会

  • 2012.06
    -
    2018.07

    白内障学会誌 編集委員, 日本白内障学会

  • 2019.07
    -
    Present

    評議員, 白内障学会

display all >>