Miyamoto, Kenji

写真a

Affiliation

Faculty of Science and Technology, Department of Biosciences and Informatics (Yagami)

Position

Professor

Related Websites

External Links

Career 【 Display / hide

  • 1992.10
    -
    2002.09

    鐘淵化学工業(株)生物化学研究所(現ライフサイエンス研究所) ,研究員

  • 2006.08
    -
    2007.08

    ドイツGreifswald大学(博士研究員)

Academic Background 【 Display / hide

  • 1988.03

    Keio University, Faculty of Science and Engineering, 化学科

    University, Graduated

  • 1990.03

    Keio University, Graduate School, Division of Science and Engineeri, 化学専攻

    Graduate School, Completed, Master's course

  • 1992.09

    Keio University, Graduate School, Division of Science and Engineeri, 化学専攻

    Graduate School, Completed, Doctoral course

Academic Degrees 【 Display / hide

  • 理学, Keio University, 1992.09

 

Research Areas 【 Display / hide

  • Nanotechnology/Materials / Green sustainable chemistry and environmental chemistry

  • Nanotechnology/Materials / Bio chemistry (微生物変換)

Research Keywords 【 Display / hide

  • プラスチック分解菌

  • 微生物

  • 有機化学

  • 遺伝子

  • 酵素

 

Books 【 Display / hide

  • 基礎から学ぶケイミカルバイオロジー

    上村大輔、袖岡幹子、阿部孝宏、闐闐孝介、中村和彦、宮本憲二, 共立出版, 2016

  • Green Biocatalysis

    MIYAMOTO KENJI, Wiley, 2016

    Scope: Decarboxylation and racemization of unnatural compounds using artificial enzymes derived from arylmalonate decarboxylase

  • 有機合成実験法ハンドブック

    MIYAMOTO KENJI, 有機合成化学協会, 2015.12

    Scope: 特殊環境からの新規酵素のスクリーニング

  • Chemical Biology

    MIYAMOTO KENJI, INTECH, 2012.02

    Scope: 63-82

  • Practical Methods for Biocatalysis and Biotransformations 2

    Miyamoto, Kenji; Kourist, Robert; Yoshida, Shosuke; Ohta, Hiromichi, 2012

display all >>

Papers 【 Display / hide

  • Fusion then fission: splitting and reassembly of an artificial fusion-protein nanocage

    Ohara N., Kawakami N., Arai R., Adachi N., Ikeda A., Senda T., Miyamoto K.

    Chemical Communications 60 ( 34 ) 4605 - 4608 2024.04

    ISSN  13597345

     View Summary

    A split-protein system is a simple approach to introduce new termini which are useful as modification sites in protein engineering, but has been adapted mainly for monomeric proteins. Here we demonstrate the design of split subunits of the 60-mer artificial fusion-protein nanocage TIP60. The subunit fragments successfully reformed the cage structure in the same manner as prior to splitting. One of the newly introduced terminals at the interior surface can be modified using a tag peptide and green fluorescent protein. Therefore, the termini could serve as a versatile modification site for incorporating a wide variety of functional peptides and proteins.

  • Thermally Reversible Gel-Sol Transition of Hydrogels via Dissociation and Association of an Artificial Protein Nanocage

    Nasu E., Kawakami N., Takamura S., Hotta A., Arai R., Miyamoto K.

    Biomacromolecules 25 ( 4 ) 2358 - 2366 2024.04

    ISSN  15257797

     View Summary

    Oligomeric protein nanocages often disassemble into their subunits and reassemble by external stimuli. Thus, using these nanocages as cross-linkers for hydrogel network structures is a promising approach to allow hydrogels to undergo stimuli-responsive gel-sol transitions or self-healing. Here, we report hydrogels that show a reversible gel-sol transition resulting from the heat-induced dissociation and reassociation of protein nanocages. The hydrogel contained the 60-mer artificial protein nanocage, TIP60, as a supramolecular cross-linker for polyethylene glycol network structures. The hydrogel showed a gel-to-sol transition upon heating at a temperature above the melting point of TIP60 and immediately returned to a gel state upon cooling to room temperature. During the heating and cooling treatment of the hydrogel, small-angle X-ray scattering analysis suggested the dissociation and reassociation of TIP60. Furthermore, we demonstrated redox-responsive cargo release from TIP60 in the hydrogel. These results showed the potential of TIP60 as a component of multi-stimuli-responsive hydrogels.

  • Alcanivorax bacteria as important polypropylene degraders in mesopelagic environments

    Koike H., Miyamoto K., Teramoto M.

    Applied and Environmental Microbiology 89 ( 12 )  2023.12

    ISSN  00992240

     View Summary

    Plastics are causing serious problems in the sea and settling even to abyssal depths. Polypropylene (PP) is the second most common plastic product and thus would constitute a large fraction of plastics in the sea. The biodegradation of PP has not been clearly shown. In this study, Alcanivorax bacteria (mainly Alcanivorax borkumensis) were indicated to be enriched most abundantly on liquid PP and on its structurally similar branched alkane, pristane, in mesopelagic water. An Alcanivorax isolate probably of A. borkumensis showed the highest liquid PP-degrading activity among the isolates. These results indicate that Alcanivorax bacteria could be major degraders of PP in mesopelagic environments. Alcanivorax bacteria did not use liquid PP as the sole carbon and energy source. Short PP was preferentially degraded, and PP of all lengths appeared to be degraded. Liquid PP was degraded more efficientlyat 10°C than at 20°C, and correspondingly, higher concentrations of another carbon source were required at 10°C. Regarding the degradation of solid PP, an initial degradation sign, oxidation, was detected, but a weight loss of at least 1% was not detected. By using this study as a model, various PP-degrading microbes would start to be clarified.

  • Column-free purification of an artificial protein nanocage, TIP60

    Nasu E., Kawakami N., Ohara N., Hayashi K., Miyamoto K.

    Protein Expression and Purification 205 2023.05

    ISSN  10465928

     View Summary

    Protein nanocages, which have inner cavities and surface pores, are attractive materials for various applications, such as in catalysts and medicine. Recently, we produced an artificial protein nanocage, TIP60, and demonstrated its potential as a stimuli-responsive nanocarrier. In the present study, we report a simple purification method for TIP60 that can replace time-consuming and costly affinity chromatography purification. TIP60, which has an anionic surface charge, aggregated at mildly acidic pH and redissolved at neutral pH, maintaining its cage structure. This pH-responsive reversible precipitation allowed us to purify TIP60 from soluble fractions of the E. coli cell lysate by controlling the pH. Compared with conventional Ni-NTA column purification, the pH-responsive precipitation method provided purified TIP60 with similar purity (∼80%) and higher yield. This precipitation purification method should facilitate the large-scale investigation and practical use of TIP60 nanocages.

  • Hydrophobization of a TIP60 Protein Nanocage for the Encapsulation of Hydrophobic Compounds

    Yamashita M., Kawakami N., Miyamoto K.

    ChemPlusChem (ChemPlusChem)  88 ( 3 )  2023.03

     View Summary

    Encapsulation of hydrophobic molecules in protein-based nanocages is a promising approach for dispersing these molecules in water. Here, we report a chemical modification approach to produce a protein nanocage with a hydrophobic interior surface based on our previously developed nanocage, TIP60. The large pores of TIP60 act as tunnels for small molecules, allowing modification of the interior surface by hydrophobic compounds without nanocage disassembly. We used four different hydrophobic compounds for modification. The largest modification group tested, pyrene, resulted in a modified TIP60 that could encapsulate aromatic photosensitizer zinc phthalocyanine (ZnPC) more efficiently than the other modification compounds. The encapsulated ZnPC generated singlet oxygen upon light activation in the aqueous phase, whereas ZnPC alone formed inert aggregates under the same experimental conditions. Given that chemical modification allows a wider diversity of modifications than mutagenesis, this approach could be used to develop more suitable nanocages for encapsulating hydrophobic molecules of interest.

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • A method to improve enzyme thermostability using support vector machines

    Tsubamoto, Hitomi; Sakakibara, Yasubumi; Yoshida, Shosuke; Miyamoto, Kenji

    Bio Industry 30 ( 8 ) 12 - 19 2013.08

    Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media), Joint Work

Presentations 【 Display / hide

  • PET樹脂を分解する酵素の発見と利用

    MIYAMOTO KENJI

    慶應テクノモール (東京国際フォーラム) , 

    2017.12

    Oral presentation (invited, special)

  • PET樹脂を食べる微生物~その生い立ちと分解機構~

    MIYAMOTO KENJI

    化学最前線 (神奈川大学平塚キャンパス) , 

    2017.09

    Oral presentation (invited, special)

  • PET 分解菌の発見と分解機構の解析

    MIYAMOTO KENJI

    第1回慶應ライフサイエンスシンポジウム (慶應義塾大学協生館) , 

    2017.08

    Oral presentation (invited, special)

  • Thermally driven asymmetric decarboxylation using a thermostable esterase as a chiral space

    MIYAMOTO KENJI

    18th Japanese-German Workshop on Enzyme Technology, 

    2015.09

    Oral presentation (invited, special)

  • 酵素機能を合理的にデザインする

    MIYAMOTO KENJI

    公益社団法人 新化学技術推進協会ライフサイエンス技術部会・反応分科会 講演会, 

    2015.01

    Oral presentation (invited, special)

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • 難分解性プラスチック分解菌の探索とその機能を利用した加工・リサイクル技術の開発

    2018.04
    -
    2023.03

    MEXT,JSPS, Grant-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (A) , Principal investigator

  • 好熱性酵素の活性部位を不斉反応場とした熱駆動型反応の実現

    2016.04
    -
    2017.03

    MEXT,JSPS, Grant-in-Aid for Scientific Research, Grant-in-Aid for Scientific Research (C), Principal investigator

Intellectual Property Rights, etc. 【 Display / hide

  • スルホン酸エステル誘導体とその製造方法及びその利用法

    Date applied: 国際出願特許WO98/05634  1998 

    Patent, Joint

  • トリアゾール誘導体の製造法

    Date applied: 国際出願特許WO95/28374  1995 

    Patent, Joint

  • 芳香族ポリエステル分解酵素及び該酵素を用いた芳香族ポリエステル分解方法

    Date applied: 特願2015-532867   

    Patent, Joint

  • 光学活性4-(2-ハロ-1-ヒドロキシエチル)-2-トリフルオロメチルチアゾールの製造方法

    Date announced: 日本特許 特開平07-170996  1995 

    Patent, Joint

  • (R)-4-(2-ハロ-1-ヒドロキシエチル)-2-トリフルオロメチルチアゾールの製造方法

    Date announced: 日本特許 特開平07-265095  1995 

    Patent, Joint

display all >>

Awards 【 Display / hide

  • 第1回イムラ・ジャパン賞

    2017.02, 株式会社イム・ラジャパン

  • 第1回イムラジャパン賞

    宮本憲二, 2017.02, 株式会社イムラジャパン, PET分解酵素の活性向上に関する研究

 

Courses Taught 【 Display / hide

  • TOPICS IN BIOSCIENCES AND INFORMATICS B

    2024

  • TOPICS IN BIOSCIENCES AND INFORMATICS 1

    2024

  • SEMINAR IN BIOSCIENCES AND INFORMATICS

    2024

  • ORGANIC CHEMISTRY FOR LIFE SCIENCE 1

    2024

  • MOLECULAR CHEMISTRY FOR LIFE SCIENCE 1

    2024

display all >>

Courses Previously Taught 【 Display / hide

  • 生化学

    慶應義塾大学理工学部

    2018.04
    -
    2019.03

  • 分子細胞生物学の基礎

    慶應義塾大学理工学部

    2018.04
    -
    2019.03

  • 自然化学実験

    慶應義塾大学理工学部

    2018.04
    -
    2019.03

  • 生体反応論第2

    慶應義塾大学

    2018.04
    -
    2019.03

  • 生物有機化学

    Keio University

    2017.04
    -
    2018.03

    Spring Semester, Lecture, Within own faculty

display all >>

 

Social Activities 【 Display / hide

  • Biocatalysis and Biotransformation

    2007.11
    -
    Present

Memberships in Academic Societies 【 Display / hide

  • 酵素工学研究会, 

    2010.04
    -
    Present
  • 日本ケミカルバイオロジー学会, 

    2010.04
    -
    Present
  • 生体触媒化学研究会, 

    2009.04
    -
    Present
  • バイオインダストリー協会, 

    2007.10
    -
    Present
  • 有機合成化学協会, 

    1992.04
    -
    2014.03

display all >>

Committee Experiences 【 Display / hide

  • 2013.04
    -
    2015.03

    関東支部幹事, 日本農芸化学会

  • 2012.04
    -
    Present

    ATP小委員会員, 日本化学会

  • 2010.04
    -
    Present

    幹事, 新規素材探索研究会

  • 2010.04
    -
    Present

    会員, 日本ケミカルバイオロジー学会

  • 2010.04
    -
    Present

    Member, 酵素工学研究会

display all >>