須藤 亮 (スドウ リョウ)

Sudo, Ryo

写真a

所属(所属キャンパス)

理工学部 システムデザイン工学科 (矢上)

職名

教授

HP

経歴 【 表示 / 非表示

  • 2005年04月
    -
    2006年09月

    慶應義塾大学 理工学部 特別研究助手

  • 2006年10月
    -
    2009年03月

    Postdoctoral Associate, Department of Biological Engnineering, Massachusetts Institute of Technology, USA

  • 2009年04月
    -
    2012年03月

    慶應義塾大学 理工学部 システムデザイン工学科 専任講師

  • 2012年04月
    -
    2020年03月

    慶應義塾大学 理工学部 システムデザイン工学科 准教授

  • 2020年04月
    -
    継続中

    慶應義塾大学 理工学部 システムデザイン工学科 教授

学歴 【 表示 / 非表示

  • 2000年03月

    慶應義塾大学, 理工学部, システムデザイン工学科

    大学, 卒業

  • 2002年03月

    慶應義塾大学, 理工学研究科, 基礎理工学専攻

    大学院, 修了, 修士

  • 2005年03月

    慶應義塾大学, 理工学研究科, 基礎理工学専攻

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 博士(工学), 慶應義塾大学, 2005年03月

 

研究分野 【 表示 / 非表示

  • ライフサイエンス / 生体医工学 (生体医工学・組織工学・細胞バイオメカニクス)

研究キーワード 【 表示 / 非表示

  • 組織工学

  • 細胞バイオメカニクス

  • バイオファブリケーション

  • マイクロ流体デバイス

 

著書 【 表示 / 非表示

  • “Vascular Morphogenesis”, Book Series “Methods in Molecular Biology”

    Masafumi Watanabe, Ryo Sudo (Editor, Domenico Ribatti), Springer, 2021年

    担当範囲: Chapter 6 Microfluidic device setting by coculturing endothelial cells and mesenchymal stem cells,  担当ページ: 57-66

  • “Hepatic Stem Cells”, Book Series “Methods in Molecular Biology”

    Ryo Sudo (Editor, Naoki Tanimizu), Springer, 2018年12月

    担当範囲: Chapter 15 Reconstruction of hepatic tissue structures using interstitial flow in a microfluidic device,  担当ページ: 167-174

  • 臓器チップの技術と開発動向

    須藤 亮(酒井 康行, 金森 敏幸 監修), シーエムシー出版, 2018年04月

    担当範囲: 第7章 マイクロ流体システムによる血管形成モデルと肝細胞3次元培養モデルの融合,  担当ページ: 193-200

  • 細胞のマルチスケールメカノバイオロジー

    谷下 一夫、須藤 亮(佐藤 正明 編著), 森北出版, 2017年05月

    担当範囲: 第6章 細胞の力学刺激にともなう器官形成,  担当ページ: 119-149

  • Vascular Engineering

    Ryo Sudo, Seok Chung, Yoojin Shin, Kazuo Tanishita (Editor, Kazuo Tanishita and Kimiko Yamamoto), Springer, 2016年03月

    担当範囲: Chapter 16 Integrated Vascular Engineering: Vascularization of Reconstructed Tissue,  担当ページ: 297-332

全件表示 >>

論文 【 表示 / 非表示

  • Spatial Heterogeneity of Invading Glioblastoma Cells Regulated by Paracrine Factors

    Yuta Chonan, Tadahiro Yamashita, Oltea Sampetrean, Hideyuki Saya, Ryo Sudo

    Tissue Engineering - Part A (Tissue Engineering - Part A)  in press 2022年

  • Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo

    Tanimizu N., Ichinohe N., Sasaki Y., Itoh T., Sudo R., Yamaguchi T., Katsuda T., Ninomiya T., Tokino T., Ochiya T., Miyajima A., Mitaka T.

    Nature Communications (Nature Communications)  12 ( 1 )  2021年12月

     概要を見る

    In the liver, the bile canaliculi of hepatocytes are connected to intrahepatic bile ducts lined with cholangiocytes, which remove cytotoxic bile from the liver tissue. Although liver organoids have been reported, it is not clear whether the functional connection between hepatocytes and cholangiocytes is recapitulated in those organoids. Here, we report the generation of a hepatobiliary tubular organoid (HBTO) using mouse hepatocyte progenitors and cholangiocytes. Hepatocytes form the bile canalicular network and secrete metabolites into the canaliculi, which are then transported into the biliary tubular structure. Hepatocytes in HBTO acquire and maintain metabolic functions including albumin secretion and cytochrome P450 activities, over the long term. In this study, we establish functional liver tissue incorporating a bile drainage system ex vivo. HBTO enable us to reproduce the transport of hepatocyte metabolites in liver tissue, and to investigate the way in which the two types of epithelial cells establish functional connections.

  • Heterogeneous Glioma Cell Invasion under Interstitial Flow Depending on Their Differentiation Status

    Namba N., Chonan Y., Nunokawa T., Sampetrean O., Saya H., Sudo R.

    Tissue Engineering - Part A (Tissue Engineering - Part A)  27 ( 7-8 ) 467 - 478 2021年04月

    ISSN  19373341

     概要を見る

    Glioblastoma (GBM) is the most common and lethal type of malignant brain tumor. A deeper mechanistic understanding of the invasion of heterogeneous GBM cell populations is crucial to develop therapeutic strategies. A key regulator of GBM cell invasion is interstitial flow. However, the effect of an interstitial flow on the invasion of heterogeneous GBM cell populations composed of glioma initiating cells (GICs) and relatively differentiated progeny cells remains unclear. In the present study, we investigated how GICs invade three-dimensional (3D) hydrogels in response to an interstitial flow with respect to their differentiation status. Microfluidic culture systems were used to apply an interstitial flow to the cells migrating from the cell aggregates into the 3D hydrogel. Phase-contrast microscopy revealed that the invasion and protrusion formation of the GICs in differentiated cell conditions were significantly enhanced by a forward interstitial flow, whose direction was the same as that of the cell invasion, whereas those in stem cell conditions were not enhanced by the interstitial flow. The mechanism of flow-induced invasion was further investigated by focusing on differentiated cell conditions. Immunofluorescence images revealed that the expression of cell-extracellular matrix adhesion-associated molecules, such as integrin β1, focal adhesion kinase, and phosphorylated Src, was upregulated in forward interstitial flow conditions. We then confirmed that cell invasion and protrusion formation were significantly inhibited by PP2, a Src inhibitor. Finally, we observed that the flow-induced cell invasion was preceded by nestin-positive immature GICs at the invasion front and followed by tubulin β3-positive differentiated cells. Our findings provide insights into the development of novel therapeutic strategies to inhibit flow-induced glioma invasion. A mechanistic understanding of heterogeneous glioblastoma cell invasion is crucial for developing therapeutic strategies. We observed that the invasion and protrusion formation of glioma initiating cells (GICs) were significantly enhanced by forward interstitial flow in differentiated cell conditions. The expression of integrin β1, focal adhesion kinase, and phosphorylated Src was upregulated, and the flow-induced invasion was significantly inhibited by a Src inhibitor. The flow-induced heterogeneous cell invasion was preceded by nestin-positive GICs at the invasion front and followed by tubulin β3-positive differentiated cells. Our findings provide insights into the development of novel therapeutic strategies to inhibit flow-induced glioma invasion.

  • Progress and challenges in vascular tissue engineering using self-organization/pre-designed approaches

    Watanabe M., Sudo R.

    Journal of Biomechanical Science and Engineering (Journal of Biomechanical Science and Engineering)  16 ( 1 ) 1 - 20 2021年03月

    ISSN  18809863

     概要を見る

    Organ transplantation is the most effective therapy for end-stage organ failure. However, the demand for lifesaving organ transplants far exceeds the supply of available organs owing to organ shortage. To address this problem, tissue engineering has offered potential strategies for in vitro construction of organs as medical and clinical applications. However, tissue-engineered organs are difficult to construct owing to the lack of functional vascular networks because avascular organs lead to tissue dysfunctions, such as hypoxia and clot formation. Therefore, establishing functional vascular networks is required for the construction and maintenance of organs in terms of morphology and function. Recent advances in tissue engineering have allowed the in vitro construction of a wide range of functional vascular networks, ranging from microvessels to organ-scale vascular networks, using self-organization and pre-designed approaches. In particular, various new models have been developed utilizing microfluidics, 3D bioprinting, and organ decellularization. These models have enabled the in vitro recapitulation of key features of physiological vascular networks, such as morphology (e.g., network formation, luminal structure, and perivascular cell coverage) and function (e.g., barrier and antithrombogenic functions). In this review, we summarize the progress and challenges in vascular tissue engineering based on two distinct categories: self-organization and pre-designed approaches. In addition, the advantages and limitations of these models are highlighted, and future perspectives are discussed. These models will provide useful insights for the construction of vascularized functional tissues and organs and can contribute to development in tissue engineering and regenerative medicine.

  • Control of vessel diameters mediated by flow-induced outward vascular remodeling in vitro

    Sano H., Watanabe M., Yamashita T., Tanishita K., Sudo R.

    Biofabrication (Biofabrication)  12 ( 4 )  2020年10月

    ISSN  17585082

     概要を見る

    Vascular networks consist of hierarchical structures of various diameters and are necessary for efficient blood distribution. Recent advances in vascular tissue engineering and bioprinting have allowed us to construct large vessels, such as arteries, small vessels, such as capillaries and microvessels, and intermediate-scale vessels, such as arterioles, individually. However, little is known about the control of vessel diameters between small vessels and intermediate-scale vessels. Here, we focus on vascular remodeling, which creates lasting structural changes in the vessel wall in response to hemodynamic stimuli, to regulate vessel diameters in vitro. The purpose of this study is to control the vessel diameter at an intermediate scale by inducing outward remodeling of microvessels in vitro. Human umbilical vein endothelial cells and mesenchymal stem cells were cocultured in a microfluidic device to construct microvessels, which were then perfused with a culture medium to induce outward vascular remodeling. We successfully constructed vessels with diameters of 40-150 μm in perfusion culture, whereas vessels with diameters of <20 μm were maintained in static culture. We also revealed that the in vitro vascular remodeling was mediated by NO pathways and MMP-9. These findings provide insight into the regulation of diameters of tissue-engineered blood vessels. This is an important step toward the construction of hierarchical vascular networks within biofabricated three-dimensional systems.

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 胆汁排泄を実現する肝・胆管組織工学の開拓

    2020年07月
    -
    2022年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 須藤 亮, 挑戦的研究(萌芽), 補助金,  研究代表者

  • 血管相互作用を基軸にした三次元コンプレックス組織工学の創生

    2019年04月
    -
    2023年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 須藤 亮, 基盤研究(B), 補助金,  研究代表者

  • 血管新生と神経新生の融合による三次元脳組織工学の開拓

    2018年06月
    -
    2020年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 須藤 亮, 挑戦的研究(萌芽), 補助金,  研究代表者

  • 間質流に誘起されるグリオーマ幹細胞の細胞集団浸潤機構の解明

    2017年10月
    -
    2021年03月

    AMED, AMED-PRIME メカノバイオロジー, 研究代表者

  • 流れ制御を基軸にした血管化組織工学

    2016年04月
    -
    2019年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 須藤 亮, 基盤研究(B), 補助金,  研究代表者

全件表示 >>

受賞 【 表示 / 非表示

  • Asian-Pacific Conference on Biomechanics 2021 Outstanding Abstract Award

    Yuta Chonan, Tadahiro Yamashita, Ryo Sudo, 2021年12月

    受賞区分: 国際学会・会議・シンポジウム等の賞

  • 2020年度 日本機械学会賞(論文)

    Masafurmi Watanabe, Ryo Sudo, 2021年04月, 日本機械学会, Establishment of an in vitro vascular anastomosis model in a microfluidic device

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 2020年度 中谷賞奨励賞

    須藤 亮, 2021年02月, 中谷医工計測技術振興財団, 三次元組織の観測・可視化ツールとしてのマイクロ流体デバイスの開発と有用性の検証

    受賞区分: 出版社・新聞社・財団等の賞

  • Journal of Biomechanical Science and Engineering, 2020 Papers of the Year

    Masafurmi Watanabe, Ryo Sudo, 2020年06月, Establishment of an in vitro vascular anastomosis model in a microfluidic device

    受賞区分: 学会誌・学術雑誌による顕彰

  • Journal of Biomechanical Science and Engineering, 2020 Graphics of the Year

    Masafurmi Watanabe, Ryo Sudo, 2020年06月, Establishment of an in vitro vascular anastomosis model in a microfluidic device

    受賞区分: 学会誌・学術雑誌による顕彰

全件表示 >>

 

担当授業科目 【 表示 / 非表示

  • システムデザイン工学実験第2

    2022年度

  • システムデザイン工学実験第1

    2022年度

  • システムデザイン工学概論

    2022年度

  • 複合領域の理工学入門

    2022年度

  • 総合デザイン工学課題研究

    2022年度

全件表示 >>

 

所属学協会 【 表示 / 非表示

  • 日本機械学会, 

    2005年01月
    -
    継続中
  • 肝細胞研究会, 

    2009年06月
    -
    継続中
  • 日本再生医療学会, 

    2009年06月
    -
    継続中
  • 日本バイオレオロジー学会, 

    2009年11月
    -
    継続中
  • 日本生体医工学会, 

    2011年04月
    -
    継続中

全件表示 >>