Yamamoto, Takashi

写真a

Affiliation

Faculty of Science and Technology, Department of Chemistry (Yagami)

Position

Associate Professor

Contact Address

3-14-1 Hiyoshi, Yokohama 223-8522

External Links

Career 【 Display / hide

  • 2004.04
    -
    2007.03

    Keio University, 21st Century COE Program "Life Conjugated Chemistry", RA

  • 2004.04
    -
    2007.03

    Keio University, 21st Century COE Program "Life Conjugated Chemistry", RA

  • 2006.04
    -
    2007.03

    Japan Society for the Promotion of Science, Research Fellow (DC2)

  • 2006.04
    -
    2007.03

    Japan Society for the Promotion of Science, Research Fellow (DC2)

  • 2007.04
    -
    2008.03

    Japan Society for the Promotion of Science, Research Fellow (PD)

display all >>

Academic Background 【 Display / hide

  • 2002.03

    Keio University, Faculty of Science and Engineering, Department of Chemistry

  • 2004.03

    Keio University, Graduate School, Division of Science and Engineering, School of Fundamental Science and Technology

  • 2007.03

    Keio University, Graduate School, Division of Science and Engineering, School of Fundamental Science and Technology

Academic Degrees 【 Display / hide

  • Doctor of Science, Keio University, Coursework, 2007.03

 

Research Areas 【 Display / hide

  • Nanotechnology/Materials / Green sustainable chemistry and environmental chemistry

  • Nanotechnology/Materials / Functional solid state chemistry

  • Nanotechnology/Materials / Functional solid state chemistry

  • Nanotechnology/Materials / Green sustainable chemistry and environmental chemistry

Research Keywords 【 Display / hide

  • Electro-Organic Chemistry

  • Diamond Electrode

  • Diamond Electrode

  • Electro-Organic Chemistry

  • Inorganic Nanosheet

display all >>

 

Books 【 Display / hide

  • Diamond Electrodes: Fundamentals and Applications

    Yamamoto Takashi, Saitoh Tsuyoshi, Springer, 2022.03

    Scope: Electro-Organic Synthesis,  Contact page: 177-195

  • Electro-Organic Synthesis

    Yamamoto T., Saitoh T., Diamond Electrodes Fundamentals and Applications, 2022.01

     View Summary

    In this chapter, we describe electro-organic synthesis using a boron-doped diamond (BDD) electrode. First, a brief introduction about electro-organic synthesis is provided. This section begins with an explanation of a basic concept in electro-organic synthesis, followed by an introduction of the important milestones. Second, we focus on the electrochemical molecular conversions where the BDD electrodes play a significant role. This section begins with a review of electrochemical properties of BDD, followed by an introduction of reported examples such as anodic methoxylation and dehydrogenative anodic C−C coupling reactions. Third, we describe our approaches toward natural product synthesis via electro-organic synthesis using a BDD electrode: (1) anodic oxidation of the phenol compound possessing a phenylpropanoid framework and (2) cathodic reduction of aromatic carbonyl compounds.

  • 有機電解合成の新潮流

    山本 崇史, 栄長 泰明, シーエムシー出版, 2021.11

    Scope: 第II編: 合成手法・応用 第23章: ダイヤモンド電極を用いた有機電解合成,  Contact page: 290-300

  • 第4版 現代界面コロイド化学の基礎

    H山本 崇史, HR, 彌田 智一, 丸善, 2018.05

    Scope: 7章: 分子の組織化-原子、分子、ナノ粒子の配列 5節: ナノポア材料の作製法と機能 2項b: 有機系規則配列,  Contact page: 392-394

  • Photon-Working Switches

    Yamamoto Takashi, Natsui Keisuke, Einaga Yasuaki, Springer, 2017.06

    Scope: Part III: Photophysics of Photoswitches, Chapter14: Photo-Modulation of Superconducting and Magnetic Property,  Contact page: 285-299

display all >>

Papers 【 Display / hide

  • Selective C-N Bond Cleavage in Unstrained Pyrrolidines Enabled by Lewis Acid and Photoredox Catalysis

    Aida, K; Hirao, M; Saitoh, T; Yamamoto, T; Einaga, Y; Ota, E; Yamaguchi, J

    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 146 ( 44 ) 30698 - 30707 2024.10

    ISSN  0002-7863

     View Summary

    Cleavage of inert C-N bonds in unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To address this, we introduce an effective strategy for the reductive cleavage of the C-N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at the C2-N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C-N bond cleavage including C-C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, γ-lactones, and tetrahydrofurans, showcasing its potential of the inert C-N bond cleavage for expanding synthetic strategies.

  • Tailoring Unstrained Pyrrolidines via Reductive C–N Bond Cleavage with Lewis Acid and Photoredox Catalysis

    Marina Hirao, Kazuhiro Aida, Tsuyoshi Saitoh, Takashi Yamamoto, Yasuaki Einaga, Eisuke Ota, Junichiro Yamaguchi

    (American Chemical Society (ACS))   2024.07

     View Summary

    Skeletal remodeling of unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To achieve such remodeling, continuous development of the cleavage of inert C–N bonds is essential. In this study, we introduce an effective strategy for the reductive cleavage of C–N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at C2–N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C–N bond cleavage including C–C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, lactones, and tetrahydrofurans, demonstrating the potential to expand synthetic strategies in skeletal remodeling.

  • Cu, Fe, N‐doped Carbon Nanotubes Prepared through Silica Coating for Selective Oxygen Reduction to Water in Acidic Media

    Masaru Kato, Daiki Abe, Siqi Xie, Shun Sato, Natsuki Fujibayashi, Koki Matsumoto, Akira Onoda, Takashi Hayashi, Takaya Mitsui, Kosuke Fujiwara, Takashi Yamamoto, Yasuaki Einaga, Colin A. Tadgell, Yuta Kato, Kiyotaka Asakura, Ichizo Yagi

    ChemCatChem (Wiley)  16 ( 15 )  2024.05

    ISSN  1867-3880

     View Summary

    Abstract

    We report Cu, Fe, N‐doped carbon nanotubes, (Cu,Fe)−N−CNT, as electrocatalysts for the oxygen reduction reaction (ORR) in acidic media. (Cu,Fe)−N−CNT was prepared using a silica coating method in pyrolysis to minimize the formation of carbon‐coated metal oxide or carbide nanoparticles, which are known to be inactive for the H<sub>2</sub>O<sub>2</sub> reduction. (Cu,Fe)−N−CNT shows a turnover frequency of 0.66 e<sup>−</sup> site<sup>−1</sup> s<sup>−1</sup> at +0.8 V vs. RHE and H<sub>2</sub>O<sub>2</sub> yields of &lt;1 % for the ORR with a utilization factor of active sites of 82 %. Kinetic analysis reveals that 4e<sup>−</sup> transfer rates for (Cu,Fe)−N−CNT are higher than those of a monometallic counterpart of Fe−N−CNT. In situ X‐ray absorption spectroscopy enables us to determine redox potentials: E°’(Fe<sup>III</sup>/Fe<sup>II</sup>)=0.65 V vs. RHE and E°’(Cu<sup>II</sup>/Cu<sup>I</sup>)=0.45 V for (Cu,Fe)−N−CNT, and E°’(Fe<sup>III</sup>/Fe<sup>II</sup>)=0.65 V for Fe−N−CNT. These results indicate that bimetallic doping into carbon nanotubes gives the effect on kinetic parameters but not on thermodynamic ones. In other words, there is no direct electronic interactions between the Cu and Fe active sites for (Cu,Fe)‐N‐CNT because such interactions should modulate their redox potentials.

  • Designing Molecularly Imprinted Polymer-Modified Boron-Doped Diamond Electrodes for Highly Selective Electrochemical Drug Sensors

    Kanako Ishii, Genki Ogata, Takashi Yamamoto, Shuyi Sun, Hiroshi Shiigi, Yasuaki Einaga

    ACS Sensors (ACS Publications)  9 ( 3 ) 1611 - 1619 2024.03

    Research paper (scientific journal), Joint Work, Accepted,  ISSN  2379-3694

     View Summary

    Drug detection in biological solutions is essential in studying the pharmacokinetics of the body. Electrochemical detection is an accurate and rapid method, but measuring multiple drugs that react at similar potentials is challenging. Herein, we developed an electrochemical sensor using a boron-doped diamond (BDD) electrode modified with a molecularly imprinted polymer (MIP) to provide specificity in drug sensing. The MIP is a polymer material designed to recognize and capture template molecules, enabling the selective detection of target molecules. In this study, we selected the anticancer drug doxorubicin (DOX) as the template molecule. In the electrochemical measurements using an unmodified BDD, the DOX reduction was observed at approximately -0.5 V (vs Ag/AgCl). Other drugs, i.e., mitomycin C or clonazepam (CZP), also underwent a reduction reaction at a similar potential to that of DOX, when using the unmodified BDD, which rendered the accurate quantification of DOX in a mixture challenging. Similar measurements conducted in PBS using the MIP-BDD only resulted in a DOX reduction current, with no reduction reaction observed in the presence of mitomycin C and CZP. These results suggest that the MIP, whose template molecule is DOX, inhibits the reduction of other drugs on the electrode surface. Selective DOX measurement using the MIP-BDD was also possible in human plasma, and the respective limits of detection of DOX in PBS and human plasma were 32.10 and 16.61 nM. The MIP-BDD was durable for use in six repeated measurements, and MIP-BDD may be applicable as an electrochemical sensor for application in therapeutic drug monitoring.

  • An Electrochemical Diagnosis of Urinary Tract Infection Using Boron-doped Diamond Electrodes

    Ziping Zhang, Genki Ogata, Kai Asai, Takashi Yamamoto, Yasuaki Einaga

    ACS Sensors (ACS Publications)  8 ( 11 ) 4245 - 4252 2023.11

    Research paper (scientific journal), Joint Work, Accepted,  ISSN  2379-3694

     View Summary

    Efficient detection of sodium nitrite in human urine could be used to diagnose urinary tract infections rapidly. Here, we demonstrate a fast and novel method for the selective detection of sodium nitrite in different human urine samples using electrolysis with a bare boron-doped diamond electrode. The measurement is performed without adding any other species, such as enzymes, and uses a simple electrochemical approach with an oxidation step followed by reduction. In the present study, we pay attention to the reduction potential range for the measurement, which is substantially different from many previous literature reports that focus on the oxidation reaction. The determination of added sodium nitrite based on cyclic voltammetry or differential pulse voltammetry is employed for two pooled urine samples and three individual urine matrices. From this, the linear response ranges for sodium nitrite detection are 0.5-10 mg/L (7.2-140 μmol/L) and 10-400 mg/L (140-5800 μmol/L). The results from these urine samples convert well to the calibration curve, with a limit of detection established as 0.82 mg/L (R2 = 0.9914), which is clinically relevant.

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • ダイヤモンド電極を活用したクメン酸化反応の開発

    北野麻奈, 山本崇史, 斉藤毅, 西山繁, 栄長泰明

    有機電子移動化学討論会講演要旨集 45th 2021

  • ホウ素ドープダイヤモンド電極を用いたイソオイゲノールの陽極酸化

    山本崇史, 五十嵐弾, 斉藤毅, 西山繁, WALDVOGEL Siegfried R., 栄長泰明, 栄長泰明

    日本化学会春季年会講演予稿集(CD-ROM) 98th 2018

  • ホウ素ドープダイヤモンドを陰極としたカルボニル化合物の電解還元

    中原謙心, 斉藤毅, 西山繁, 山本崇史, 栄長泰明, 栄長泰明

    電気化学秋季大会講演要旨集(CD-ROM) 2018 2018

  • ホウ素ドープダイヤモンド電極を活用したフェニルアセトン類の電解還元による新規炭素-炭素結合開裂反応

    張岩, 須貝智也, 斉藤毅, 山本崇史, 西山繁, 栄長泰明, 栄長泰明, 長瀬博, 長瀬博

    有機電子移動化学討論会講演要旨集 42nd 2018

  • ダイヤモンド電極を活用した有機電解合成

    YAMAMOTO Takashi, SAITOH Tsuyoshi, EINAGA Yasuaki

    NEW DIAMOND 34 ( 2 ) 26 - 29 2017.01

    Article, review, commentary, editorial, etc. (scientific journal), Joint Work

display all >>

Presentations 【 Display / hide

  • Surface-Modified Diamond Electrodes for Electrochemical Application

    Takashi Yamamoto

    10th German-Japanese Symposium on Electrosynthesis (GJSE-10) (Yokohama) , 

    2023.06

    Oral presentation (invited, special)

  • Sustainable Molecular Conversion Using Diamond Electrodes

    Takashi Yamamoto

    The 15th International Symposium on Organic Reactions (ISOR-15), 

    2022.11

    Oral presentation (invited, special)

  • Diamond Electrode for Sustainable Synthesis

    Takashi Yamamoto

    9th German-Japanese Symposium on Electrosynthesis (GJSE-9), 

    2022.10

    Oral presentation (invited, special)

  • Heterostructured 2D Magnetic Materials

    Takashi Yamamoto

    3rd Workshop on Nanotechnologies for 21st Century: Cooperation Event between Albania, Japan, and Spain (Tirana) , 

    2022.10

    Oral presentation (invited, special)

  • 異種ナノシート集積膜の磁気特性

    山本崇史

    日本化学会第102春季年会, 

    2022.03

    Oral presentation (invited, special)

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • 電解発生活性化学種の利用による新物質変換系の構築

    2023.04
    -
    Present

    MEXT,JSPS, Grant-in-Aid for Scientific Research, 山本 崇史, Grant-in-Aid for Scientific Research (A), Coinvestigator(s)

     View Summary

    特殊な電極材料、特殊な電極界面を用いることで、従来法では達成できなかった反応を実現できる。また、そのような独特な反応を誘起することで、従来法による物質合成では達成し得なかった有用な物質を創製できる。特に、次世代の電極材料である「ダイヤモンド電極」の特異的な電気化学特性である「電解発生活性化学種の生成」に焦点を絞り、これを利用した独創的な反応開拓、ならびに革新的な物質創製へと展開することを目指す。
    ダイヤモンド電極上では、通常電極と異なり、活性化学種を効率的に発生することができる。すなわち、この活性種により高い反応性 (酸化/還元力) を示すことが期待される。したがって、このような活性化学種を有機電解合成におけるメディエーターとして活用することによって、従来研究の延長線上では困難な「不活性な化合物の直接的分子変換の実現」が期待できる。このことを利用して、本年度は、ダイヤモンド電極を用いた特異な反応を目指し、新規反応開拓、新規物質合成につなげることを目標としていくつかの成果を挙げた。はじめに、モリブデン触媒による窒素還元が報告されていることを利用し、モリブデンを電気化学的に修飾したダイヤモンド電極を作製した。この複合電極では、ダイヤモンド電極の耐久性を維持しつつ触媒能が付与されている。この電極を用いることにより、窒素還元でアンモニアを生成することに成功した。さらに、「不活性な化合物の直接的分子変換の実現」を目指し、反応系をフロー系としたリアクターを設計した。バッチ法と比べて、反応効率の向上などが期待できる。このフローリアクターを用いて、クメンの酸化反応を行ったところ、バッチ法より効率的に起こすことに成功した。そのほか、ダイヤモンド電極を用いた炭素-炭素結合開裂反応による有用物質創製のための実験系を構築した。実際に糖を電解により分解することができた。このことにより、ダイヤモンド電極界面での、糖の電解に関する基礎的な知見を得た。
    本年度は、ダイヤモンド電極上で発生することができる活性化学種を有機電解合成におけるメディエーターとして活用することによって、従来研究の延長線上では困難な「不活性な化合物の直接的分子変換の実現」を目指した。その結果、実際に、炭素-炭素結合開裂によって、実際の有用物質生成を実証する実験系の構築に成果を挙げた。さらに、その他の直接的分子変換系の構築として、窒素からのアンモニア生成や、クメンの酸化反応など、具体的な物質変換例を示すことができたため。
    次年度は、本年度の成果をふまえ、ダイヤモンド電極の特異性である「高効率で活性化学種を生成できる」ことをより積極的に利用した戦略的な新反応、新物質創製を目指す。
    本年度に構築した炭素-炭素結合開裂反応による有用物質創製系をさらに発展させ、実際に新反応、新物質創製を目指す新しい系を構築する。

  • Mass Production and Property of Two-Dimensional Magnetic Nanosheets

    2021.04
    -
    2024.03

    MEXT,JSPS, Grant-in-Aid for Scientific Research, 山本 崇史, Grant-in-Aid for Scientific Research (C), Principal investigator

     View Summary

    厚みが数nm程度に対して横サイズが数μmに及ぶ超異方的2次元結晶の総称である無機ナノシートは次世代エレクトロニクス・スピントロニクスの基幹材料として有望視されている。本研究課題では、磁性体ナノシートの大量合成手法を確立することによって磁性パラメーターを実験的に獲得し、2次元磁性体の本質に迫ることを目的とする。具体的には、酸素や水に対して比較的耐性があり、磁気転移温度が比較的高い2次元磁性体であるFe3GeTe2, MPS3 (M: 遷移金属イオン) を探索対象とする。

  • 無機ナノシートの光磁気物性の開拓とスピントロニクスへの展開

    2018.04
    -
    2021.03

    Keio University, Grant-in-Aid for Scientific Research, Takashi Yamamoto, Grant-in-Aid for Scientific Research (C), Research grant, Principal investigator

  • 異種界面形成に基づいた協奏的な電子物性の開拓

    2013.04
    -
    2016.03

    Grant-in-Aid for Scientific Research, 山本 崇史, Research grant, Principal investigator

  • 階層構造を有する多重物性システムの構築

    2012.04
    -
    2014.03

    Grant-in-Aid for Scientific Research, 山本 崇史, Research grant, Principal investigator

display all >>

Intellectual Property Rights, etc. 【 Display / hide

  • 自立性高分子薄膜

    Date applied: 2009-126425  2009.05 

    Date announced: 2010-275349  2010.12 

    Patent

Awards 【 Display / hide

  • 令和元年度有機電子移動化学奨励賞

    2019.06, 有機電子移動化学研究会, 電子移動反応を活用した無機および有機材料の創出

    Type of Award: Other

  • 学生講演賞

    2006.03, 日本化学会・第86春季年会, Co-Feプルシアンブルー超薄膜における、異方的光誘起磁化の発現

    Type of Award: Award from Japanese society, conference, symposium, etc.

 

Courses Taught 【 Display / hide

  • SEMINAR IN CHEMISTRY

    2025

  • NANO SCALE SCIENCE JOINT SEMINAR

    2025

  • MATERIAL DESIGN SCIENCE JOINT SEMINAR

    2025

  • LABORATORY IN SCIENCE

    2025

  • LABORATORIES IN CHEMISTRY 1

    2025

display all >>

Courses Previously Taught 【 Display / hide

  • LABORATORY IN SCIENCE

    Keio University

    2025.04
    -
    2026.03

  • INDEPENDENT STUDY ON INTEGRATED DESIGN ENGINEERING

    Keio University

    2025.04
    -
    2026.03

  • GRADUATE RESEARCH ON INTEGRATED DESIGN ENGINEERING 2

    Keio University

    2025.04
    -
    2026.03

  • GRADUATE RESEARCH ON INTEGRATED DESIGN ENGINEERING 1

    Keio University

    2025.04
    -
    2026.03

  • NANO SCALE SCIENCE JOINT SEMINAR

    Keio University

    2025.04
    -
    2026.03

display all >>

 

Social Activities 【 Display / hide

  • セミナー「(有機)電解合成・電解反応のメカニズム、二酸化炭素の還元、電池・電子材料の合成、その他の応用 ダイヤモンド電極を活用した有機電解合成」

    技術情報協会

    2023.10
  • 電気化学セミナー「初心者のための電気化学測定法(実習編) インピーダンス法による電解液のイオン伝導率測定」

    電気化学会

    2023.08
  • 電気化学セミナー「初心者のための電気化学測定法(実習編) インピーダンス法による電解液のイオン伝導率測定」

    電気化学会

    2022.08
  • 地域連携授業 (川崎市立木月小学校)

    2018.01
  • 実験教室 (日本化学会・第97春季年会)

    2017.03

display all >>

Memberships in Academic Societies 【 Display / hide

  • 日本化学会

     
  • 電気化学会, 

    2018
    -
    Present
  • 高分子学会

     
  • 光化学協会

     
  • American Chemical Society

     

display all >>

Committee Experiences 【 Display / hide

  • 2024.04
    -
    Present

    電気化学ディビジョン幹事, 日本化学会

  • 2024.04
    -
    Present

    電気化学ディビジョン幹事, 日本化学会

  • 2023.12
    -
    Present

    化学グランプリ2023オブザーバー, 日本化学会

  • 2023.12
    -
    Present

    化学グランプリ2024オブザーバー, 日本化学会

  • 2023.12
    -
    Present

    化学グランプリ2023オブザーバー, 日本化学会

display all >>