Shimomura, Shun

写真a

Affiliation

Faculty of Science and Technology (Mita)

Position

Professor Emeritus

External Links

Career 【 Display / hide

  • 1979.04
    -
    1982.01

    科学技術庁航空宇宙技術研究所総理府 ,技官

  • 1982.02
    -
    1988.03

    神戸大学(大学院自然科学研究科) ,助手

  • 1988.04
    -
    1996.03

    慶應義塾大学(理工学部数理学科) ,専任講師

  • 1990.04
    -
    1991.03

    東海大学(微積分A) ,非常勤講師

  • 1991.10
    -
    1992.03

    東海大学(微積分) ,非常勤講師

display all >>

Academic Background 【 Display / hide

  • 1976.03

    The University of Tokyo, Faculty of Science, 数学科

    University, Graduated

  • 1978.03

    The University of Tokyo, Graduate School, Division of Science, 数学専攻

    Graduate School, Completed, Master's course

  • 1979.03

    The University of Tokyo, Graduate School, Division of Science, 数学専攻

    Graduate School, Withdrawal before completion, Doctoral course

Academic Degrees 【 Display / hide

  • 理学 , The University of Tokyo, 1984.04

 

Books 【 Display / hide

  • Nevanlinna 理論の微分方程式への応用

    SHIMOMURA SHUN, 神戸大学理学部数学教室, 2003

  • Painleve Differential Equations in the Complex Plane

    V. Gromak; SHIMOMURA SHUN; I. Laine, Walter de Gruyter, Berlin, 2002

  • From Gauss to Painleve, A Modern Theory of Special Functions

    K.Iwasaki,H.Kimura, SHIMOMURA SHUN, Y.Yoshida, vieweg, 1991.04

     View Summary

    超幾何方程式、モノドロミー保存変形Painleve方程式について解説した。全347頁。 Studies on nonlinear differential equations

Papers 【 Display / hide

  • On a General Singular Solution of the Fifth Painlevé Equation Along the Positive Real Axis

    Shimomura S.

    Computational Methods and Function Theory (Computational Methods and Function Theory)   2021

    ISSN  16179447

     View Summary

    We propose a system of non-linear equations equivalent to the fifth Painlevé equation, which enables us to examine the general singular solution given by Andreev and Kitaev along the positive real axis. We present a two-parameter family of asymptotic solutions corresponding to this general singular solution, and pose a conjecture.

  • Elliptic asymptotic representation of the fifth Painleve transcendents

    Shun Shimomura

    (arXiv:2012.07321, math.CA, math-ph, 54 pages)   2020.12

    Research paper (other academic), Single Work

  • Three-parameter solutions of the PV Schlesinger-type equation near the point at infinity and the monodromy data

    Shimomura S.

    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) (Symmetry, Integrability and Geometry: Methods and Applications (SIGMA))  14 2018

     View Summary

    © 2018, Institute of Mathematics. All rights reserved. For the Schlesinger-type equation related to the fifth Painlevé equation (V) via isomonodromy deformation, we present a three-parameter family of matrix solutions along the imaginary axis near the point at infinity, and also the corresponding monodromy data. Two-parameter solutions of (V) with their monodromy data immediately follow from our results. Under certain conditions, these solutions of (V) admit sequences of zeros and of poles along the imaginary axis. The monodromy data are obtained by matching techniques for a perturbed linear system.

  • Critical behaviours of the fifth Painleve transcendents and the monodromy data

    SHIMOMURA SHUN

    Kyushu J. Math. 71   139 - 185 2017

    Research paper (bulletin of university, research institution), Single Work, Accepted

  • Logarithmic solutions of the fifth Painleve equation near the origin

    SHIMOMURA SHUN

    Tokyo J. Math. 39 ( 3 ) 797 - 825 2017

    Research paper (scientific journal), Single Work, Accepted

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Presentations 【 Display / hide

  • Painleve 超越関数の振る舞いについて

    SHIMOMURA SHUN

    Tokyo Journal of Mathematics 筱田記念号刊行に寄せて (上智大学) , 

    2016.03

    Oral presentation (invited, special)

  • On certain nonlinear differential equations

    SHIMOMURA SHUN

    The 12th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications (国際キリスト教大学) , 

    2004.07

    Oral presentation (invited, special)

  • Second main theorem for Painleve transcendents

    SHIMOMURA SHUN

    Workshop COE 21 Math. Scie. U-Tokyo 「値分布と小林双曲性 Value Distribution Theory and Kobayashi Hyperbolicity」 (東京大学大学院数理科学研究所) , 

    2004.07

    Oral presentation (invited, special)

  • On second-order nonlinear differential equations with quasi-Painleve property

    SHIMOMURA SHUN

    短期共同研究「Recent Trends in Exponential Asymptotics」 (京都大学数理解析研究所) , 

    2004.06

    Oral presentation (invited, special)

  • ある2階非線形方程式について

    SHIMOMURA SHUN

    研究集会「複素領域の微分方程式」 (神戸大学瀧川記念学術交流会館) , 

    2004.01

    Oral presentation (invited, special)

display all >>

 

Courses Taught 【 Display / hide

  • FUNCTIONAL EQUATIONS 2

    2020

  • FUNCTIONAL EQUATIONS 2

    2019

 

Social Activities 【 Display / hide

  • Mathematical Review

    1999
    -
    Present
  • Zentralblatt fur Mathematik

    1998.07
    -
    Present

Memberships in Academic Societies 【 Display / hide

  • 日本数学会

     

Committee Experiences 【 Display / hide

  • 1998.07
    -
    Present

    reviewer, Zentralblatt fur Mathematik