Miyata, Shogo

写真a

Affiliation

Faculty of Science and Technology, Department of Mechanical Engineering (Yagami)

Position

Professor

Related Websites

External Links

Career 【 Display / hide

  • 2003.10
    -
    2004.03

    東京大学大学院工学系研究科21世紀COEリサーチアシスタント

  • 2003.10
    -
    2004.03

    東京大学大学院工学系研究科21世紀COEリサーチアシスタント

  • 2004.04
    -
    2005.03

    東京大学大学院工学系研究科助手

  • 2004.04
    -
    2005.03

    東京大学大学院工学系研究科助手

  • 2004.04
    -
    2011.03

    産業技術総合研究所招聘型客員研究員

display all >>

Academic Background 【 Display / hide

  • 1999.03

    The University of Tokyo, Faculty of Engineering, 機械工学科

    University, Graduated

  • 2001.03

    The University of Tokyo, Graduate School, Division of Engineering, 機械工学専攻

    Graduate School, Completed, Master's course

  • 2004.03

    The University of Tokyo, Graduate School, Division of Engineering, 機械工学専攻

    Graduate School, Completed, Doctoral course

Academic Degrees 【 Display / hide

  • 博士(工学), The University of Tokyo, Coursework, 2004.03

 

Research Areas 【 Display / hide

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Mechanics of materials and materials

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Mechanics of materials and materials

  • Life Science / Biomedical engineering (Biomedical Engineering/Biological Material Studies)

  • Life Science / Biomedical engineering (Biomedical Engineering/Biological Material Studies)

  • Life Science / Biomaterials (Biomedical Engineering/Biological Material Studies)

Research Keywords 【 Display / hide

  • Biomechanics

  • Biomechanics

  • Tissue engineering

  • Tissue engineering

  • Biophysical engineering

display all >>

Research Themes 【 Display / hide

  • Development of Biocompatible Flexible Electrode using Conductive Polymer, 

    2013.04
    -
    Present

  • Response of human skin fibroblast to stretch in wound healing process using a novel three-dimensional culture model, 

    2012.12
    -
    Present

  • Fundamental study of platelet diagnosis by dielectrophoretic phenomena, 

    2012.04
    -
    2015.03

  • In vitro formation of the neural network using the response of cells to electrical environment, 

    2011.04
    -
    Present

  • Effect of UV/ozone surface modification on proliferation of embryonic stem cells, 

    2011.04
    -
    2014.03

display all >>

Proposed Theme of Joint Research 【 Display / hide

  • 細胞チップ(皮膚,神経,毛髪組織,など)を用いた対象薬品および物質のスクリーニングテスト

    Interested in joint research with industry (including private organizations, etc.),  Desired form: Funded Research

  • 細胞チップ(皮膚,脂肪,神経)による創薬スクリーニングデバイスの開発

    Interested in joint research with industry (including private organizations, etc.),  Desired form: Funded Research, Cooperative Research

 

Books 【 Display / hide

  • 技術予測レポート2023(上)健康寿命の延伸を目指す日本の技術編

    株式会社日本能率協会総合研究所, 2013.12

    Scope: 第3章 治療機器・再生医療

  • Tissue Regeneration - From Basic Biology to Clinical Application

    S. Miyata, INTECH, 2012.03

    Scope: pp.473-488

  • Biomaterials in Asia

    S. Miyata, K. Homma, T. Numano, T. Ushida, T. Tateishi, World Scientific Pub., 2009.01

    Scope: pp.482-493

  • 立石科学技術振興財団助成研究成果集

    MIYATA Shogo, 立石科学技術振興財団, 2009

  • 中谷電子計測技術振興財団年報

    MIYATA Shogo, 中谷電子計測技術振興財団, 2008.08

    Scope: pp.67-70

display all >>

Papers 【 Display / hide

  • Effects of Clump Size on the Pluripotency and Proliferation in the Passaging Process of Mouse Induced Pluripotent Stem Cells

    Ishii K., Abe K., Sakamoto T., Hasebe H., Miyata S.

    Processes 12 ( 11 )  2024.11

    Accepted

     View Summary

    Induced pluripotent stem cells (iPSCs) are a promising cell source because of their pluripotency and self-renewal abilities. However, there is a risk of pluripotency loss during cell expansion. Particularly, cell passaging is associated with a higher risk of decreasing cell quality. There are two iPSC passaging methods: single-cell and clump passaging. Single-cell passaging is a rapid and simple method for cell manipulation, whereas clump passaging is superior for maintaining iPSC pluripotency. Therefore, clump passaging is a robust method for expanding iPSCs while maintaining their pluripotency. However, clump size control during clump passaging is difficult because colony fragmentation is performed manually by pipetting the colonies detached from the cell culture substrates. In this study, the effect of pipetting on iPSC colony fragmentation was evaluated and the relationship between iPSC clump size and pluripotency was clarified. An automated pipetting device was developed to standardize the clump passage process. The effect of clump size on the pluripotency and proliferative capacity of mouse iPSCs was investigated. Clump size was controlled by varying the number of pipetting cycles, and pluripotency and proliferation were assessed via alkaline phosphatase staining and flow cytometry. Our results revealed that a decrease in clump size corresponded to an increase in cell proliferation, while pluripotency maintenance was optimized under specific clump sizes. These results underscore the significance of clump size for stem cell quality, emphasizing the need for a balanced approach to maintain pluripotency while fostering proliferation in the cell expansion culture for iPSCs.

  • Effects of delamination treatment time and fluid shear force on the maintenance of pluripotency in mouse ES cells during the passage process

    Abe, K; Ueno, K; Miyata, S

    MOLECULAR BIOLOGY OF THE CELL 34 ( 2 ) 776 - 776 2023.02

    Accepted,  ISSN  1059-1524

  • Metallic Vessel with Mesh Culture Surface Fabricated Using Three-dimensional Printing Engineers Tissue Culture Environment

    Imashiro C., Morikura T., Hayama M., Ezura A., Komotori J., Miyata S., Sakaguchi K., Shimizu T.

    Biotechnology and Bioprocess Engineering 28 ( 1 ) 181 - 191 2023.02

    Accepted,  ISSN  12268372

     View Summary

    Various culture devices have been developed as fundamental technologies for facilitating bioengineering studies. Culture devices are designed to prepare specific culture environments. Thus, both macrostructures and surface micromorphology should be considered in the device design. Although fabricating devices with elaborate designs incurs high production costs, disposable materials are typically used for culture devices. However, some metallic materials are strong, stable, and biocompatible. Bioengineers have not applied these materials to culture devices because of the difficulty of processing. An emerging technology using three-dimensional (3D) printing has been developed, which can produce complex designs using metal. We demonstrate the applicability and potential of metal 3D printing for fabricating culture devices toward the development of the bioengineering discipline. As a specific example, we fabricated metallic culture devices where the environment of cultured tissues can be improved. One of the biggest factors determining the culture environment is active media supply. To attain active media supply to the tissue, devices having culture surfaces with mesh structures having holes far larger than cells were proposed. Cell sheets were cultured as tissue models, realizing tissue culture with such structures. The cultured tissue showed increased metabolism, indicating enhanced media supply owing to mesh surfaces. The biocompatibility of the 3D printed metal device was confirmed by viability assays on cultured cells, and reusability of the device was confirmed by mechanical and biochemical evaluations. We believe this study serves as a reference for using metallic 3D printing as an option for fabricating culture devices, which will promote bioengineering research.

  • Platelet-Rich Plasma Purification by Dielectrophoresis and Fluid-Induced Shear Force

    Yamashita M., Inoue H., Miyata S.

    Bioelectricity 4 ( 4 ) 190 - 197 2022.12

    Accepted,  ISSN  25763105

     View Summary

    Background: Platelets contain cytokines and growth factors, which promote wound healing and tissue regeneration. Platelet concentrates, known as platelet-rich plasma (PRP), are used for tissue repair and regeneration in clinical settings. PRP is conventionally prepared by the centrifugation of blood; therefore, blood cells such as erythrocytes and leukocytes cannot be fully eliminated. The purpose of this study was to establish high purification of platelets using dielectrophoresis (DEP) to eliminate blood cells from platelet concentrates. Materials and Methods: The DEP properties of human blood constituents (erythrocytes, leukocytes, and platelets) were characterized. Based on the characterization of DEP properties, PRP was purified to eliminate blood cells using dielectrophoretic and flow-induced shear forces. Results: Erythrocytes and platelets showed similar DEP responses, whereas the crossover frequency of leukocytes differed from those of erythrocytes and platelets. Blood cells can be eliminated from the PRP under specific DEP conditions and flow rates. Conclusion: Blood cells in PRP can be eliminated using DEP and flow-induced shear, with a high platelet recovery rate.

  • Effect of Compressive Stress in Tumor Microenvironment on Malignant Tumor Spheroid Invasion Process

    R Nishi, Y Oda, T Morikura, S Miyata

    International Journal of Molecular Sciences 23 ( 13 ) 7091 2022.06

    Research paper (scientific journal), Joint Work, Last author, Corresponding author, Accepted,  ISSN  16616596

     View Summary

    In this study, we proposed an in vitro tumor model to simulate the mechanical microenvironment and investigate the effect of compressive stress on the invasion process of malignant tumors. It has been pointed out that the biomechanical environment, as well as the biochemical environment, could affect the transformation of cancer cell migration, invasion, and metastasis. We hypothesized that the solid stress caused by the exclusion of surrounding tissue could transform tumor cells from noninvasive to invasive phenotypes. Colorectal cell spheroids were embedded and cultured in agarose gels of varying concentrations to simulate the earliest stages of tumor formation and invasion. The spheroids embedded in gels at higher concentrations showed peculiar growth after 72 h of culture, and the external compressive loading imposed on them caused peculiar growth even in the gels at lower concentrations. In conclusion, the mechanical microenvironment caused the transformation of tumor cell phenotypes, promoting the growth and invasion of tumor cell spheroids.

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • Biocompatibility of materials : mechanical compatibility of biomaterials

    Shogo Miyata

    Pharm stage 16 ( 10 ) 53 - 57 2017.01

    Article, review, commentary, editorial, etc. (scientific journal), Single Work

  • Non-invasive assessment technology for tissue-engineered material

    Shogo Miyata

    Pharm stage (技術情報協会)  17 ( 5 ) 8 - 12 2017

    Article, review, commentary, editorial, etc. (scientific journal), Single Work,  ISSN  1346-3918

  • 微粒子ピーニングによる細胞適合表面の創製とその応用

    小茂鳥 潤, 倉科佑太, 村井一恵, 宮田昌悟, 竹村研治郎, 小山尹誉

    砥粒加工学会誌 57 ( 6 ) 349 - 352 2013

    Article, review, commentary, editorial, etc. (scientific journal), Joint Work

Presentations 【 Display / hide

  • マウスES 細胞の剥離プロセスが再播種後の多能性維持 に与える影響

    植野馨太, 宮田昌悟, 阿部公揮, 坂本禎志, 栗原 隆

    the 34th Bioengineering Conference 2022 Annual Meeting of BED/JSME, 

    2022.06

    Poster presentation

  • 機械的振動刺激が皮膚由来細胞の老化現象に与える影響

    石原美優,宮田昌悟

    the 34th Bioengineering Conference 2022 Annual Meeting of BED/JSME, 

    2022.06

    Poster presentation

  • Effect of Hydrogel Stiffness on Growth and Invasion Process of Tumor Spheroid

    R Nishi, Y Oda, T Morikura, S Miyata

    the 11th Asian-Pacific Conference on Biomechanics (AP Biomech 2021), 

    2021.12

    Poster presentation

  • Effect of Mechanical Stimulation on Migration Mode of Malignant Melanoma

    R Yoshida, K Harada, T Morikura, S Miyata

    the 11th Asian-Pacific Conference on Biomechanics (AP Biomech 2021), 

    2021.12

    Poster presentation

  • Generation of Cell Spheroid Using Hanging Drop Culture Combined with Orbital Shaking

    S Sato, S Miyata

    the 11th Asian-Pacific Conference on Biomechanics (AP Biomech 2021), 

    2021.12

    Poster presentation

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • 癌細胞の初期悪性化・浸潤を左右する4次元力学場の探索と浸潤抑制治療への展開

    2022.04
    -
    2025.03

    日本学術振興会, 科学研究費補助金, 基盤研究B(一般), Research grant, Principal investigator

  • 細胞配置と力学的刺激の複合効果がもたらす毛髪および皮膚附属器官の完全生体外再生

    2017.04
    -
    2020.03

    Grant-in-Aid for Scientific Research, Research grant, No Setting

  • プラズマ・ラジカル複合反応を用いた生体分子疑似構造を有するヒトiPS培養基材

    2017.04
    -
    2018.03

    文部科学省, 橋渡し研究加速ネットワークプログラム(シーズA), Research grant, Principal investigator

  • プラズマ・ラジカル複合反応を用いた生体分子疑似構造を有するヒトiPS培養基材

    2016.12
    -
    2017.03

    文部科学省, 橋渡し研究加速ネットワークプログラム(シーズA), Research grant, Principal investigator

  • 酸素ラジカル表面改質基材を用いたヒトiPS 細胞の完全単独培養システムと再生心筋細胞移植への展開

    2015.09
    -
    2016.03

    文部科学省, 橋渡し研究加速ネットワークプログラム(シーズA), Research grant, No Setting

display all >>

Works 【 Display / hide

  • 未来の起源

    MIYATA Shogo

    2013.04
    -
    Present

    Other, Single

  • ES細胞安定回収 フィーダ細胞分離 誰でも素早く

    S. Miyata

    2012.08
    -
    Present

    Other, Single

  • 骨や靱帯を再生させる技術って?

    MIYATA Shogo

    2011.07
    -
    Present

    Other, Single

  • 慶大、不良・良好な細胞傷つけずに分離する方法開発

    S. Miyata

    2011.07
    -
    Present

    Other, Single

  • 人のカラダは作ることができるか?

    MIYATA Shogo

    2010.08
    -
    Present

    Other, Single

display all >>

Intellectual Property Rights, etc. 【 Display / hide

  • 細胞担持用基材及びその製造方法

    Date applied: PCT/JP2016/000981  2016.02 

    Patent, Joint

  • 細胞担持用基材及びその製造方法

    Date applied: 特願2015-35439  2015.02 

    Patent, Joint

  • 細胞操作装置

    Date applied: 2012-098304  2012.04 

    Patent, Joint

  • METHOD FOR ACCUMULATING CELLS

    Date applied: US-20120064595-A1  2012 

    Patent, Joint

  • 細胞集積法

    Date applied: 2010-204989  2010.09 

    Patent, Joint

Awards 【 Display / hide

  • Outstanding Student Presentation

    森倉峻, 徳岡雄大, 山田貴大, 板井駿, 長友竜帆, 原田慧吾, 三木則尚, 尾上弘晃, 舟橋啓, 宮田昌悟, 2022.01, 日本機械学会バイオエンジニアリング部門, 高速ラベルフリー三次元細胞形状計測に向けた深層学習に基づくシングルショット計算顕微鏡法

    Type of Award: Award from Japanese society, conference, symposium, etc.

  • Young Investigator’s Award

    森倉 峻, 宮田 昌悟, 2019.06, 日本生体医工学会, 間欠的圧縮変形刺激がin vitro三次元悪性黒色腫モデルの細胞増殖を伴う浸潤プロセスに与える影響

    Type of Award: Award from Japanese society, conference, symposium, etc.

  • Best Paper Award

    Y. Kurashina, I. H. M. Hashim, K. Takemura, S. Miyata, J. Komotori, 2015.11, ASME, Resonance Vibration and Temperature Modulation Enhances Cell Detachment from Cultivation Substrate

    Type of Award: International academic award (Japan or overseas),  Country: United States

  • 平成23年度日本材料学会 生体・医療材料部門 研究奨励賞

    MIYATA Shogo, 2012.03

    Type of Award: Award from Japanese society, conference, symposium, etc.

  • 日本機械学会バイオエンジニアリング部門瀬口賞

    MIYATA Shogo, 2012.01, 日本機械学会, 再生軟骨および関節軟骨の非侵襲評価技術に関する研究

    Type of Award: Award from Japanese society, conference, symposium, etc.

display all >>

 

Courses Taught 【 Display / hide

  • SPECIAL LECTURE SERIES ON MULTIDISCIPLINARY AND DESIGN SCIENCE

    2024

  • PROJECT LABORATORY IN MECHANICAL ENGINEERING

    2024

  • PHYSICS B

    2024

  • INTRODUCTION TO SCIENCE AND TECHNOLOGY

    2024

  • INTRODUCTION TO MATERIALS SCIENCE

    2024

display all >>

Courses Previously Taught 【 Display / hide

  • 情報処理同実習

    慶應義塾大学理工学部

    2018.04
    -
    2019.03

  • 図形情報処理

    慶應義塾大学理工学部

    2018.04
    -
    2019.03

  • 機械工学実験

    慶應義塾大学理工学部

    2018.04
    -
    2019.03

  • 機械工学創造演習

    慶應義塾大学理工学部

    2018.04
    -
    2019.03

  • 形状情報の表現

    Keio University

    2017.04
    -
    2018.03

    Autumn Semester, Laboratory work/practical work/exercise

display all >>

 

Memberships in Academic Societies 【 Display / hide

  • 日本機械学会, 

    2011.04
    -
    Present
  • 化学工学会, 

    2011.04
    -
    2013.03
  • 日本材料学会, 

    2009.04
    -
    Present
  • 日本バイオレオロジー学会, 

    2007
    -
    Present
  • American Society of Mechanical Engineers (ASME), 

    2005
    -
    Present

display all >>

Committee Experiences 【 Display / hide

  • 2012.04
    -
    2014.03

    運営委員, 日本機械学会 バイオエンジニアリング部門

  • 2011.04
    -
    2014.03

    関東支部代議員, 日本機械学会

  • 2011.04
    -
    2013.03

    編集委員, 化学工学誌

  • 2010.04
    -
    Present

    会計幹事, 日本材料学会 生体・医療材料部門

  • 2009.04
    -
    2010.03

    庶務幹事, 日本材料学会 生体・医療材料部門