松尾 亜紀子 (マツオ アキコ)

Matsuo, Akiko

写真a

所属(所属キャンパス)

理工学部 機械工学科 (矢上)

職名

教授

HP

外部リンク

総合紹介 【 表示 / 非表示

経歴 【 表示 / 非表示

  • 1989年04月
    -
    1993年03月

    (株)リクルート スーパーコンピュータ研究所勤務

  • 1992年01月
    -
    1993年09月

    日本学術振興会(DC1)(名古屋大学), 特別研究員

  • 1993年10月
    -
    1995年03月

    日本学術振興会(PD)(文部省宇宙科学研究所), 特別研究員

  • 1995年04月
    -
    1997年03月

    慶應義塾大学理工学部, 助手

  • 1995年06月

    文部科学省宇宙科学研究所, 共同研究員

全件表示 >>

学歴 【 表示 / 非表示

  • 1987年03月

    津田塾大学, 学芸学部, 数学科

    大学, 卒業

  • 1989年03月

    名古屋大学, 工学研究科, 航空工学専攻課程

    大学院, 修了, 修士

  • 1993年09月

    名古屋大学, 工学研究科, 航空工学専攻課程

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 工学, 名古屋大学, 1993年09月

 

研究分野 【 表示 / 非表示

  • ものづくり技術(機械・電気電子・化学工学) / 流体工学

  • フロンティア(航空・船舶) / 航空宇宙工学

 

著書 【 表示 / 非表示

  • Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines (Shock Wave and High Pressure Phenomena)

    K. Matsuoka, H. Taki, J. Kasahara, H. Watanabe, A. Matsuo, and T. Endo, Springer International Publishing, 2018年01月

    担当範囲: Pulse Detonation Cycle at Kilohertz Frequency, Chapter 8, pp.183-198

  • Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines (Shock Wave and High Pressure Phenomena)

    J. Kasahara, Y. Kato, K. Ishihara, K. Goto, K. Matsuoka, A. Matsuo, I. Funaki, H. Moriai, D. Nakata, K. Higashino, and N. Tanatsugu, Springer International Publishing, 2018年01月

    担当範囲: Application of Detonation Waves to Rocket Engine Chamber, Chapter 4, pp.61-76

  • 機械工学便覧 基礎編 α5 熱 工 学

    松尾亜紀子 他62名, 日本機械学会, 2006年12月

    担当範囲: 2・14 気体の流動 pp44-48

  • 数値流体力学ハンドブック

    松尾亜紀子 他79名, 丸善, 2003年03月

    担当範囲: 6・6 デトネーション pp300-303

論文 【 表示 / 非表示

  • Numerical investigation of a detonation-assisted fuel injection system in supersonic crossflow

    Miyashita M., Matsuo A., Shima E., Itouyama N., Kawasaki A., Matsuoka K., Kasahara J.

    Combustion and Flame 281 2025年11月

    ISSN  00102180

     概要を見る

    A novel detonation-assisted fuel injection system was developed in this study to achieve highly efficient supersonic combustion in scramjet engines. In this configuration, a Rotating Detonation Combustor (RDC) with an annular shape was coaxially employed around the main fuel injector, where hydrogen was injected perpendicular to the supersonic airflow. The computational domain consisted of a three-dimensional rectangular region, into which a Mach 2.4 supersonic flow was introduced to simulate flight conditions corresponding to Mach 8.0 at an altitude of 30 km. The main fuel injector and the RDC were coaxially connected to the isothermal lower wall of the scramjet engine. In the RDC, a stoichiometric premixed H₂–O₂ mixture was supplied from the bottom to generate a detonation wave. The compressible Navier–Stokes equations were solved under unsteady conditions. As a result, a detonation wave propagated continuously within the RDC, even when connected to the combustor section exposed to the supersonic main stream. The detonation products, accelerated to supersonic speeds, were discharged together with the main fuel into the scramjet combustor. This configuration generated large-scale vortex structures in the main stream, leading to a combustion efficiency up to 1.9 times higher and a 56% reduction in combustor length. This enhancement was primarily attributed to the high-enthalpy detonation products containing reactive radicals, which assisted main fuel penetration, increasing the penetration height by approximately 85%. Furthermore, high-frequency pressure disturbances with helically distributed spatial patterns were observed on the lower wall of the scramjet combustor, which were considered to contribute to combustion enhancement. These results demonstrate the effectiveness of detonation-assisted injection and highlight its potential as a solution to the long-standing challenges of stable and efficient combustion in supersonic propulsion systems.

  • Numerical evaluation of the effectiveness of detonation gas injection for enhancing combustion performance in scramjet engines

    Miyashita M., Matsuo A., Shima E., Itouyama N., Kawasaki A., Matsuoka K., Kasahara J.

    Proceedings of the Combustion Institute 41 ( 105941 )  2025年10月

    研究論文(学術雑誌), 共著, 査読有り

  • Effect of reflection wall distance and supply conditions on reflective shuttling detonation combustor

    Nagaoka T., Matsuoka K., Takahashi Y., Watanabe H., Itouyama N., Kawasaki A., Kasahara J., Matsuo A.

    Combustion and Flame 276 2025年06月

    ISSN  00102180

     概要を見る

    In a reflective shuttling detonation combustor (RSDC), detonation waves propagate between the two reflection walls of a thin combustion chamber. As the chamber is two-dimensional and does not have any curvature, optical and pressure measurements can be conducted simultaneously. In this study, pressure measurements as well as self-luminous and schlieren visualizations were performed using a chamber with a reflection wall distance of 90 mm with ethylene and oxygen. Consequently, the detonation wave number increased from 2 to 5 following the total mass flux, indicating that the wave number depended on the reflection wall distance because the maximum wave number increased with increasing distance. In addition, although the reflection wall distance was varied, the mode transition, in which the wave number increased from 1 to 2, 2 to 3, and 3 to 4, occurred at similar values to the critical value at which the maximum mixture fill height was non-dimensionalized by the cell size. The dimensionless detonation wave propagation distance, that is, the reflection wall distance divided by the wave number and maximum mixture fill height, was 3.0 ± 0.3, which is almost the same as that of the previous 45 mm combustor. Additionally, when the ratio of the reflective wall distance to the wave number is the same, the dimensionless quantities match, except in a few cases. Comparing the model results with the schlieren results, different trends were caused by non-ideal phenomena arising from the supply conditions, such as the equivalence ratio and the relationship between the plenum pressure and combustion pressure.

  • Direction Control of Rotating Detonation Waves with Helical Combustion Chambers

    Sawada S., Itouyama N., Matsuoka K., Kasahara J., Braun J., Paniagua G., Kawasaki A., Higashino K., Matsuo A., Funaki I.

    Journal of Propulsion and Power 41 ( 2 ) 164 - 177 2025年03月

    ISSN  07484658

     概要を見る

    This paper explores the innovative direction control of rotating detonation waves in rotating detonation engines (RDEs) by adjusting the ignition location and employing helical combustors with a sinusoidal cross section. In our experimental setup, we conducted 25 combustion tests using two distinct combustor geometries, each featuring different helical profile directions. The following conclusion drawn from the results: when the ignition was positioned 30.6–46.0 mm from the inlet, the detonation wave direction was invariably influenced by the helical direction. This correlation was statistically significant, with an occurrence probability (assuming a random direction probability of 0.5) being 3 × 10−8, far exceeding the 0.05 significance level. Furthermore, the helical combustors generated a measurable torque due to the pressure differentials created by shock waves within the combustor. This torque, recorded between 0.040 and 0.077 N ⋅ m at a mass flow rate of 28.5–29.0 g/s, indicates the potential of power extraction from the combustor. Notably, the torque direction was also controllable via the helical direction. This study presents a significant advancement in propulsion technology, demonstrating a novel method to control detonation wave direction and torque generation in RDEs through helical combustor design, paving the way for more efficient and controllable propulsion systems.

  • Lagrangian characterization of induction and reaction timescales in a cellular gaseous detonation

    Watanabe H., Matsuo A., Chinnayya A., Itouyama N., Matsuoka K., Kasahara J.

    Physics of Fluids 37 ( 2 )  2025年02月

    ISSN  10706631

     概要を見る

    A Lagrangian approach was proposed to analyze induction and reaction times in the cellular gaseous detonation. Two-dimensional simulations in an argon-diluted and non-diluted hydrogen-based mixtures were performed with detailed chemistry, along particle trajectories. The distribution of the induction and reaction times inside the cell was significantly different between the Eulerian and the Lagrangian perspectives, the latter showing non-monotonic behavior. Preferential thermodynamic paths laid along the Rankine-Hugoniot curve and behind transverse waves (TW). All particles were ignited within half and one cell cycle for the diluted and non-diluted mixture, respectively. The ignition mechanisms were not only one-dimensional, but also multi-dimensional, with ignition behind the TW being the most important, and collision of TW and triple points being secondary. A new topology inside the cell could be drawn, from the intersection of the ignition front with TW. TW appeared as phase waves in the ( x , t ) diagram. Comparison of H2O mass fraction between local and equilibrium values indicated that a local chemical disequilibrium remained (superequilibrium), due to TW. Equating the mean sonic plane with thermochemical equilibrium in the non-diluted case is not completely accurate. Furthermore, the characteristic time scales for chemical and hydrodynamic phenomena were compared. The diffusive phenomenon did not make any contribution in the mixtures tested. In comparison with the Zel'dovich-von Neumann-Döring model, a shorter average induction time was found in the non-diluted mixture, which is not in line with the results from previous Favre approaches. The average reaction time was also shorter in both mixtures.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

総説・解説等 【 表示 / 非表示

  • 特集 航空宇宙分野御コンピューターシミュレーション

    松尾 亜紀子 他

    計算工学 28 ( 3 )  2023年07月

    記事・総説・解説・論説等(学術雑誌), 責任著者

  • 爆発現象等に関する安全工学の研究に従事する理工学部機械工学科女性教授ープラントにおける爆発現象ー

    松尾 亜紀子

    高圧ガス (高圧ガス保安協会)  57 ( 1 ) 23 - 27 2020年01月

    記事・総説・解説・論説等(その他), 単著,  ISSN  0452-2311

  • 極超音速飛しょう体におけるサボ分離挙動に関する数値解析

    笠原弘貴, 松尾亜紀子

    防衛技術ジャーナル (一般財団法人 防衛技術協会)  2019年9月号 ( 462 ) 46 - 52 2019年09月

    速報,短報,研究ノート等(学術雑誌), 共著

  • 化学プラント爆発事象再現へ向けた燃焼過程の解析技術

    松尾亜紀子

    安全工学 (安全工学会)  57 ( 6 ) 465 - 470 2018年12月

    記事・総説・解説・論説等(学術雑誌), 単著,  ISSN  0570-4480

  • デトネーション解析における数値シミュレーションモデル

    松尾 亜紀子

    機械の研究 70 ( 9 ) 713 - 716 2018年09月

    記事・総説・解説・論説等(学術雑誌), 単著

全件表示 >>

研究発表 【 表示 / 非表示

  • Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-34: Performance of Rotating Detonation Engine Using Liquid Propellants

    Sato, T., Matsuoka, K., Itouyama, N., Yasui, M., Matsuyama, K., Ide, Y., Nakata, K., Suzuki, Y., Ishibashi, R., Suzuki, S., Kasahara, J., Kawasaki, A., Hirashima, H., Nakata, D., Eguchi, H., Takano, T., Uchiumi, M., Matsuo, A., Funaki, I., Habu, H., Arakawa, S., Masuda, J., Kawahara, K., Usuki, T., Maehara, K., Shida, M., Nakao, T., Yamada, K., Himeno, T., and Yahata, Y.

    2025 AIAA SciTech Forum (Orland, Florida, U.S.A.) , 

    2025年01月

    口頭発表(一般)

  • Experimental Investigation of Gaseous Film Cooling for Cylindrical Rotating Detonation Engines

    Chan, A., Nakata, K., Itouyama, N., Matsuoka, K., Kasahara, J., Kawasaki, A., Matsuo, A., Funaki, I., and Higashino, K.

    2025 AIAA SciTech Forum (Orland, Florida, U.S.A.) , 

    2025年01月

    口頭発表(一般)

  • Numerical Investigation of Detonation-Assisted Fuel Injection Method in Scramjet Engines With Rotating Detonation Combustor

    Miyashita, M., Matsuo, A., Shima, E., Itouyama, N., Kawasaki, A., Matsuoka, K., and Kasahara, J.

    2025 AIAA SciTech Forum (Orland, Florida, U.S.A.) , 

    2025年01月

    口頭発表(一般)

  • In-space Flight Demonstration of the Detonation Engine System 2 in the S-520-34 Sounding Rocket Experiment: A Quick Report

    Kawasaki, Kasahara, Yasui, Matsuyama, Matsuoka, Itouyama, Ide, Sato, Nakata, Sawada, Ishibashi, Suzuki, Suzuki, Iida, Nakama, Matsuo, Funaki, Nakata, Takano, Eguchi, Uchiumi, Hirashima, Himeno, Yahata, Habu, Usuki, Arakawa, Masuda, Shida, Nakao, Nagata, Yamada, Maehara, Kawahara

    16th International Space Conference of Pacific-basin Societies (ISCOPS) (Obihiro, Hokkaido) , 

    2024年11月

    口頭発表(一般)

  • Numerical Study on Optimum Fuel Injection System for Supersonic Air Flow Assisted by Detonation Combustor

    Miyashita, M., Matsuo, A., Shima, E., Kawasaki, A., Itouyama, N., Matsuoka, K., and Kasahara, J.

    The 8th International Symposium on Energetic Materials and their Applications (ISEM2024) (Tokyo, Japan) , 

    2024年11月

    口頭発表(一般)

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 多分散系微粉体がもたらす爆発被害:シミュレーションが解き明かす炭塵燃焼と安全評価

    2018年04月
    -
    2021年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 松尾 亜紀子, 基盤研究(B), 補助金,  研究代表者

知的財産権等 【 表示 / 非表示

  • パルスデトネーションエンジン用多孔微細管燃料酸化剤供給プレート

    出願日: 2000-258181  2000年07月 

    公開日: 2002-39012  2002年02月 

    特許権, 共同

受賞 【 表示 / 非表示

  • 2023年度日本燃焼学会論文賞

    川﨑央, 稲川 智也, 笠原次郎, 後藤 啓介, 松岡健, 松尾亜紀子, 船木一幸, 2023年11月, 日本燃焼学会, Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 令和5年度流体科学研究賞

    2023年11月, 一般財団法人 機器研究会

    受賞区分: 国内外の国際的学術賞

  • 圧力増大燃焼論文賞

    K. Goto, K. Matsuoka, K. Matsuyama, A. Kawasaki, H. Watanabe, N. Itouyama, K. Ishihara, V. Buyakofu, T. Noda, J. Kasahara (Nagoya Univ.), A. Matsuo(Keio Univ.), I. Funaki (JAXA), D. Nakata, M. Uchiumi (Muroran Inst. Tech.), H. Habu, S. Takeuchi, S. Arakawa, J. Masuda, K. Maehara, T. Nakao, K. Yamada (JAXA), 2023年01月, 米国航空宇宙学会, Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Performance of Rotating Detonation Engine

    受賞区分: 国際学会・会議・シンポジウム等の賞,  受賞国: アメリカ合衆国

     説明を見る

    深宇宙探査用デトネーションエンジンの宇宙飛行実証論文に対しAIAAが2022 AIAA Pressure Gain Combustion Best Paper Awardを授与。2021年7月27日に名古屋大学、宇宙航空研究開発機構、慶應義塾大学、室蘭工業大学との共同研究として観測ロケットS-520-31号機の第2段を用いてデトネーションエンジンの宇宙飛行実証を実施した。その結果を論文として公開し、その研究論文に対し、AIAAからBest Paper Awardを授与された。この賞は圧力増大燃研究(デトネーションエンジン研究)で2022年に米国航空宇宙学会で発表された口頭発表論文の内、優れた1件に授与される。

  • 2021年『美しい炎』の写真展最優秀作品賞

    松尾亜紀子 他, 2021年11月, 一般社団法人 日本燃焼学会, 世界初!デトネーションエンジン宇宙実証

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 2020年『美しい炎』の写真展最優秀作品賞

    松尾亜紀子 他, 2020年12月, 一般社団法人 日本燃焼学会, デトネーションエンジン宇宙へ

    受賞区分: 国内学会・会議・シンポジウム等の賞

全件表示 >>

 

担当授業科目 【 表示 / 非表示

  • 交換協定課題研究B

    2025年度

  • 交換協定課題研究A

    2025年度

  • 機械工学創造演習

    2025年度

  • 開放環境科学特別研究第2

    2025年度

  • 開放環境科学特別研究第1

    2025年度

全件表示 >>

担当経験のある授業科目 【 表示 / 非表示

  • 宇宙推進工学

    慶應義塾

    2014年04月
    -
    2015年03月

    春学期, 講義

  • 機械工学創造演習

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期, 演習, 兼担

  • 熱力学の基礎

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期, 講義

  • 高速空気力学

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期, 講義

  • 応用計算力学特論第2

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期, 講義

全件表示 >>

 

社会活動 【 表示 / 非表示

全件表示 >>

メディア報道 【 表示 / 非表示

全件表示 >>

所属学協会 【 表示 / 非表示

  • International Association for Hydrogen Safety, 

    2015年07月
    -
    継続中
  • 国際衝撃波学会, 

    2013年
    -
    継続中
  • 日本計算工学会, 

    2002年12月
    -
    継続中
  • 日本火災学会, 

    2002年11月
    -
    2021年
  • 日本原子力学会, 

    2002年11月
    -
    2007年03月

全件表示 >>

委員歴 【 表示 / 非表示

  • 2025年11月
    -
    2025年12月

    京都大学大学院エネルギー科学研究科外部評価委員, 京都大学

  • 2025年10月
    -
    2027年09月

    井上春成賞委員会選考委員, 国立研究開発法人科学技術振興機構

  • 2025年10月
    -
    2025年12月

    違法なドローン飛行対策に関する検討会 委員, 警察庁警備局

  • 2025年09月
    -
    2026年02月

    内閣府委託事業「安全・安心に関するシンクタンク機能育成事業(事業項目①:調査研究)」に関する ヒアリングの外部専門家, 内閣府

  • 2025年09月
    -
    2026年03月

    先端建設技術に係る現場実証WG 委員, 国土交通省

全件表示 >>