Matsuo, Akiko

写真a

Affiliation

Faculty of Science and Technology, Department of Mechanical Engineering (Yagami)

Position

Professor

Related Websites

External Links

Profile Summary 【 Display / hide

Career 【 Display / hide

  • 1989.04
    -
    1993.03

    (株)リクルート スーパーコンピュータ研究所勤務

  • 1991.04
    -
    1993.03

    (株)リクルート 休職

  • 1992.01
    -
    1994.03

    日本学術振興会(DC1)(名古屋大学) ,特別研究員

  • 1994.04
    -
    1995.03

    日本学術振興会(PD)(文部省宇宙科学研究所) ,特別研究員

  • 1995.04
    -
    1997.03

    慶應義塾大学理工学部 ,助手

display all >>

Academic Background 【 Display / hide

  • 1987.03

    Tsuda College, Faculty of Arts and Science, 数学科

    University, Graduated

  • 1989.03

    Nagoya University, Graduate School, Division of Engineering, 航空工学専攻課程

    Graduate School, Completed, Master's course

  • 1993.09

    Nagoya University, Graduate School, Division of Engineering, 航空工学専攻課程

    Graduate School, Completed, Doctoral course

Academic Degrees 【 Display / hide

  • 工学, Nagoya University, 1993.09

 

Research Areas 【 Display / hide

  • Fluid engineering

  • Aerospace engineering

 

Books 【 Display / hide

  • Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines (Shock Wave and High Pressure Phenomena)

    K. Matsuoka, H. Taki, J. Kasahara, H. Watanabe, A. Matsuo, and T. Endo, Springer International Publishing, 2018.01

    Scope: Pulse Detonation Cycle at Kilohertz Frequency, Chapter 8, pp.183-198

  • Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines (Shock Wave and High Pressure Phenomena)

    J. Kasahara, Y. Kato, K. Ishihara, K. Goto, K. Matsuoka, A. Matsuo, I. Funaki, H. Moriai, D. Nakata, K. Higashino, and N. Tanatsugu, Springer International Publishing, 2018.01

    Scope: Application of Detonation Waves to Rocket Engine Chamber, Chapter 4, pp.61-76

  • 機械工学便覧 基礎編 α5 熱 工 学

    松尾亜紀子 他62名, 日本機械学会, 2006.12

    Scope: 2・14 気体の流動 pp44-48

  • 数値流体力学ハンドブック

    松尾亜紀子 他79名, 丸善, 2003.03

    Scope: 6・6 デトネーション pp300-303

Papers 【 Display / hide

  • Optical Measurement of Fluid Motion in Semi-Valveless Pulse Detonation Combustor with High-Frequency Operation

    Kubota A., Matsuoka K., Kawasaki A., Kasahara J., Watanabe H., Matsuo A., Endo T.

    Combustion Science and Technology (Combustion Science and Technology)  192 ( 2 ) 197 - 212 2020.02

    ISSN  00102202

     View Summary

    © 2018, © 2018 Taylor & Francis Group, LLC. The purge layer of a semi-valveless pulse detonation cycle (PDC) needs to be minimized for operating at a gas-dynamic upper frequency limit. Therefore, it is essential to better understand the process of burned gas backflow for minimizing the purge layer thickness. The flow field of the semi-valveless PDC was visualized to illustrate the movement of burned gas. A combustor of length of 95 mm with a 10-mm-square cross section was used. Supercritical ethylene and oxygen gas were used as fuel and oxidizer, respectively, and the operation frequency was 604 Hz. The unsteady refilling process of the detonable mixture was modeled by an isentropic flow. In addition, the detailed burned gas blowdown process with deflagration-to-detonation transition (DDT) and the backflow were captured. It was shown that the retonation wave generated by the DDT process was the primary trigger of the burned gas backflow. When the duration required for the DDT process was sufficiently shorter than that of the burned gas blowdown process, it was found the latter could be reproduced with approximately 90% accuracy by one-dimensional numerical analysis without the DDT process.

  • Numerical analysis of the mean structure of gaseous detonation with dilute water spray

    Watanabe H., Matsuo A., Chinnayya A., Matsuoka K., Kawasaki A., Kasahara J.

    Journal of Fluid Mechanics (Journal of Fluid Mechanics)  887 2020

    ISSN  00221120

     View Summary

    © 2020 The Author(s). Published by Cambridge University Press. Two-dimensional (2-D) numerical simulations based on the Eulerian-Lagrangian method that take droplet break-up into account are conducted to clarify the mean structure of gaseous detonation laden with a dilute water spray. The premixed mixture is a slightly diluted stoichiometric hydrogen-oxygen mixture at low pressure. The simulated results are analysed via 2-D flow fields and statistical Favre spatiotemporal averaging techniques. Gaseous detonation with water droplets (WD) propagates stably with a velocity decrease compared with the dry Chapman-Jouguet speed. The mean structure of gaseous detonation with dilute water spray shares a similar structure as the one without water spray. However, the hydrodynamic thickness is changed due to the interaction with water spray. Overall interphase exchanges (mass, momentum and energy) that take place within the hydrodynamic thickness induce a decrease of the detonation velocity and lower the level of fluctuations downstream of the mean leading shock wave. Droplet break-up occurs downstream of the induction zone and in our case, the water vapour from the evaporation of water spray does not affect the reactivity of gaseous detonation. The laminar master equation for gaseous detonation laden with inert WD shows that the hydrodynamic thickness should rely on the gaseous sound speed, and works well as the working mixture is weakly unstable and its cellular structure is regular. The droplet flow regimes and break-up modes have also been determined. The characteristic lengths of detonation and interphase exchanges have been ordered under the present simulation conditions and have been shown to be intimately intertwined.

  • Prediction model of the flow properties inside a tube during hydrogen leakage

    Nagase Y., Sugiyama Y., Kubota S., Saburi T., Matsuo A.

    Journal of Loss Prevention in the Process Industries (Journal of Loss Prevention in the Process Industries)  62 2019.11

    ISSN  09504230

     View Summary

    © 2019 Elsevier Ltd We numerically investigated high-pressure hydrogen leakage from transportation facilities, focusing on the steady mass flow rate and pressure distribution in a tube during the leakage. We studied steady leakage from a square opening in a square duct as well as leakage from a ruptured cylindrical tube with unsteady closure of a cutoff valve from fully open. A prediction model for the mass flow rate and pressure distribution inside the tube was proposed; such a model would help prevent physical hazards during an accident. We considered changes in the physical quantities according to the fluid dynamics occurring inside the tube. The flow properties were divided into two phases: (i) the unsteady expansion wave propagating inside a tube filled with hydrogen and (ii) the acceleration of hydrogen due to the reduction in the cross-sectional area between the tube and the leakage opening. To close the prediction model, we introduced contraction coefficient models depending on how the hydrogen leakage occurred. The mass flow rate and pressure drop during the leakage estimated by our prediction model showed good agreement with numerical simulation results when the contraction coefficient model was appropriately chosen. This model is considered highly applicable to the construction condition of pressure sensors, the operating conditions of a valve, and the prediction of mass flow rate during an accident.

  • Research and development of rotating detonation engine system for the sounding rocket flight experiment S520-31

    Kasahara J., Kawasaki A., Matsuoka K., Matsuo A., Funaki I., Nakata D., Uchiumi M.

    AIP Conference Proceedings (AIP Conference Proceedings)  2121 2019.07

    ISSN  9780735418615

     View Summary

    © 2019 Author(s). A detonation is a combustion wave that propagates at supersonic speed (2∼3 km/s) in a combustible mixture. There are many fundamental studies of detonation waves and detonation engine systems. The detonation cycle has a higher thermal efficiency than a conventional constant-pressure combustion cycle. Therefore, it is expected that a high-efficiency propulsion system can be realized using detonation waves.A rotating detonation engine (RDE) uses continuous detonation propagating at a bottom in an annular combustor. As detonation waves propagate at a supersonic speed only in the bottom region of the RDEs, the combustor can be shortened. However, the combustor needs cooling system due to high heat flux to the combustor wall. In this experimental study, we performed combustion tests of RDE system using gaseous ethylene and oxygen as the propellant. This RDE system performance will also be demonstrated in space environment by the sounding rocket. We measured the combustor pressure, temperatures, heat flus, mass flow rate and thrust. The RDE system used in this study is shown in Figure 1. We performed the long-duration rotating detonation engine combustion tests for at sea level condition. The stable trust histories were obtained.

  • Semi-valveless pulse detonation cycle at a kilohertz-scale operating frequency

    Matsuoka K., Taki H., Kawasaki A., Kasahara J., Watanabe H., Matsuo A., Endo T.

    Combustion and Flame (Combustion and Flame)  205   434 - 440 2019.07

    ISSN  00102180

     View Summary

    © 2019 The Combustion Institute A high operating frequency of a pulse detonation engine is required to increase the thrust-to-engine weight ratio or thrust density. The semi-valveless pulse detonation cycle (PDC) proposed by Matsuoka et al. (2017) can achieve a high operating frequency exceeding several kilohertz. For achieving a higher operating frequency close to the upper limit of gas dynamics, it is necessary to minimize the process in which the buffer layer is applied to avoid self-ignition of the detonable mixture. Experiments were conducted, and a one-dimensional numerical model was developed to investigate the minimum thickness of the buffer layer and the required duration for the stable PDC operation. Ethylene was used as a fuel and pure oxygen as an oxidizer. The total length of two combustors with an inner diameter of 10 mm was 40 and 80 mm. Therefore, the thickness of the buffer layer of approximately 20 mm was suggested for the stable PDC operation. This result indicated that 10% of the duration of one PDC was required to prevent self-ignition (SI). In the failed PDC, the early and late SI were confirmed. Interestingly, high-frequency PDC operation with a short combustor can suppress late SI and results in a higher success rate with the same thickness of the buffer layer. Furthermore, a stable PDC operation of a 1916 Hz with a combustor with a total length of 40 mm was demonstrated.

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • 長生きと医療とサイボーグ

    松尾 亜紀子

    かながわサイエンスインフォメーション (神奈川県)   2020.01

    Introduction and explanation (others), Single Work

  • 爆発現象等に関する安全工学の研究に従事する理工学部機械工学科女性教授ープラントにおける爆発現象ー

    松尾 亜紀子

    高圧ガス (高圧ガス保安協会)  57 ( 1 ) 23 - 27 2020.01

    Introduction and explanation (others), Single Work,  ISSN  0452-2311

  • 化学プラント爆発事象再現へ向けた燃焼過程の解析技術

    松尾亜紀子

    安全工学 (安全工学会)  57 ( 6 ) 465 - 470 2018.12

    Research paper, Single Work,  ISSN  0570-4480

  • デトネーション解析における数値シミュレーションモデル

    松尾 亜紀子

    機械の研究 70 ( 9 ) 713 - 716 2018.09

    Introduction and explanation (scientific journal), Single Work

  • THERE'S A NEW CYCLE IN TOWN

    Nagoya and Keio Universities, JAXA, and the Muroran Institute of Technology

    MECHANICAL ENGINEERING    36 - 41 2018.07

    Introduction and explanation (bulletin of university, research institution), Joint Work

display all >>

Presentations 【 Display / hide

  • Numerical investigation of detonation in stratified combustible and inert gasses with concentration gradients

    Shigeoka, S., and Matsuo, A.

    The 8th International Conference on Hydrogen Safety (ICHS 2019) (Adelaide, Australia) , 2019.09, Oral Presentation(general)

  • An Experimental Study of In-Space Rotating Detonation Rocket Engine with Cylindrical Configuration

    Kawasaki, A., Yokoo, R., Goto, K., Ju-Hoe Kim, Matsuoka,K., Kasahara, J., Matsuo, A, and Funaki, I.

    The AIAA Propulsion and Energy Forum and Exposition (Indianapolis, Indiana, U.S.A.) , 2019.08, Oral Presentation(general)

  • Numerical Investigation on Characteristic Lengths for Gaseous Detonation with Dilute Water Spray

    Watanabe, H., Matsuo, M., Ashwin Chinnayya, Matsuoka, K., Kawasaki, A., and Kasahara, J.

    The AIAA Propulsion and Energy Forum and Exposition (Indianapolis, Indiana, U.S.A.) , 2019.08, Oral Presentation(general), AIAA

  • Propulsive Performance of Rotating Detonation Engines in CH4/O2 and C2H4/O2 for Flight Experiment

    Goto, K., Kawasaki, A., Matsuoka, K., Kasahara, J., Matsuo, A., Nakata, D., Yokoo, R., Kim, J., Funaki, I., and Uchiumi, M.

    27th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) (Beijing, China) , 2019.07, Oral Presentation(general)

  • The Numerical Investigation of Hydrogen Detonation Propagating in Semi-confined Layers

    Shigeoka, S., Matsuo, A., Kawasaki, A., Kasahara, J., and Matsuoka, K.

    27th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) (Beijing, China) , 2019.07, Oral Presentation(general)

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • 多分散系微粉体がもたらす爆発被害:シミュレーションが解き明かす炭塵燃焼と安全評価

    2018.04
    -
    2021.03

    MEXT,JSPS, Grant-in-Aid for Scientific Research, 松尾 亜紀子, Grant-in-Aid for Scientific Research (B), Principal Investigator

Works 【 Display / hide

  • 圧縮性流体中の燃焼現象解明へ向けた数値解析による取り組み[基調講演]

    松尾 亜紀子

    第55回燃焼シンポジウム, 

    2017.11
    -
    Present

    Other, Single

  • シンポジウム 「津田塾大学の強さと将来性」

    松尾 亜紀子 他3名

    津田塾大学 津田梅子記念会 & Homecoming Day, 

    2017.10
    -
    Present

    Other, Joint

  • 社会における女性活躍促進の現状、知ってますか?

    松尾 亜紀子

    日本循環器学会男女共同参画フォーラム, 

    2016.12
    -
    Present

    Other, Single

  • 気相デトネーションエンジンの実証へ向けた研究

    松尾 亜紀子

    平成28年度弾道学研究会講演会, 

    2016.11
    -
    Present

    Other, Single

  • 宇宙への夢:実現へ向けた歩み

    松尾 亜紀子

    津田塾大学 ウェルネス・センター公開講座, 

    2016.05
    -
    Present

    Other, Single

display all >>

Intellectual Property Rights, etc. 【 Display / hide

  • パルスデトネーションエンジン用多孔微細管燃料酸化剤供給プレート

    Application No.: 2000-258181  2000.07 

    Announcement No.: 2002-39012  2002.02 

    Patent, Joint

Awards 【 Display / hide

  • The Antoni K. Oppenheim Award 2019

    Akiko Matsuo, 2019.08, 27th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)

    Type of Award: Awards of International Conference, Council and Symposium

     View Description

    For her original contributions to the numerical simulation of reactive flows, particularly supersonic combustion and detonation, and the analysis of advanced propulsion systems.

  • 50th Fluid Dynamics Conference / 36th Aerospace Simulation Technology Symposium Grand Prize Fluid Dynamics Division

    Kawasaki, A., Kasahara, J., Inakawa, T., Matsuoka, K., Kawashima , H., Matsuo, A., and Funaki, I., 2018.08, The Japan Society for Aeronautical and Space Sciences Aerodynamics Division Committee, An Experimental Investigation of the Effect of Inner Cylinder on the Performance of a Rotating Detonation Rocket Engine

    Type of Award: Awards of National Conference, Council and Symposium.  Country: Japan

  • 平成27年度弾道学研究会奨励賞

    志村啓, 松尾亜紀子, 2016.06, 弾道学研究会, 直径5㎜の飛翔体加速装置に対する砲内弾道シミュレーション

  • 平成24年度日本燃焼学会論文賞

    Ken Matsuoka, Motoaki Esumi, Ken Bryan Ikeguchi, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, 2012.12, 日本燃焼学会, Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve

  • 第19回弾道学研究会奨励賞

    MIURA HIROAKI, MATSUO AKIKO, 2011.11, 弾道学研究会, 砲内・過渡弾道解析における燃焼流体シミュレーションとその数値解析モデルの研究

display all >>

 

Courses Taught 【 Display / hide

  • ADVANCED COURSE IN APPLIED AND COMPUTATIONAL MECHANICS 1

    2019

  • LABORATORY IN SCIENCE

    2019

  • INTRODUCTION TO FLUID MECHANICS

    2019

  • INDEPENDENT STUDY ON SCIENCE FOR OPEN AND ENVIRONMENTAL SYSTEMS

    2019

  • INDEPENDENT STUDIES IN MECHANICAL ENGINEERING

    2019

display all >>

Courses Previously Taught 【 Display / hide

  • 宇宙推進工学

    Keio University, 2014, Spring Semester, Major subject, Lecture

  • 機械工学創造演習

    Keio University, 2014, Autumn Semester, Major subject, Seminar, Lecturer outside of Keio

  • 熱力学の基礎

    Keio University, 2014, Autumn Semester, Major subject, Lecture

  • 高速空気力学

    Keio University, 2014, Autumn Semester, Major subject, Lecture

  • 応用計算力学特論第2

    Keio University, 2014, Autumn Semester, Major subject, Lecture

display all >>

 

Social Activities 【 Display / hide

  • 日本航空宇宙学会 第51期代議員

    2019.04
    -
    2020.03
  • 日本流体力学会 2019年度(第27期)代議員

    2019.04
    -
    2020.03
  • 日本航空宇宙学会 第51期理事 筆頭副会長

    日本航空宇宙学会

    2019.04
    -
    2020.03
  • 日本機械学会 メカジョ未来フォーラム実行委員会 委員

    2018.05
    -
    2019.03
  • 一般財団法人火薬学会 第41期理事

    2018.04
    -
    2019.03

display all >>

Memberships in Academic Societies 【 Display / hide

  • International Association for Hydrogen Safety, 

    2015.07
    -
    Present
  • 日本計算工学会, 

    2002.12
    -
    Present
  • 日本火災学会, 

    2002.11
    -
    Present
  • 日本原子力学会, 

    2002.11
    -
    2007.03
  • 火薬学会, 

    2002.07
    -
    Present

display all >>

Committee Experiences 【 Display / hide

  • 2019.06
    -
    2020.03

    交通管制安全情報分析委員会 委員, 国土交通省

  • 2019.05
    -
    2021.03

    産業構造審議会 保安・消費生活用製品安全分科会 臨時委員, 経済産業省

  • 2019.04
    -
    2021.02

    科学技術・学術審議会 研究計画・評価分科会 核融合科学技術委員会 委員, 文部科学省

  • 2019.04
    -
    2020.03

    宇宙政策委員会 臨時委員, 内閣府

  • 2019.04
    -
    2020.03

    一般財団法人 日本消防設備安全センター , ガス系消火設備等評価専門委員会 委員

display all >>