尾上 弘晃 (オノエ ヒロアキ)

Onoe, Hiroaki

写真a

所属(所属キャンパス)

理工学部 機械工学科 (矢上)

職名

教授

HP

経歴 【 表示 / 非表示

  • 2005年04月
    -
    2007年03月

    東京大学, 情報理工学系研究科, 日本学術振興会 特別研究員(DC2-PD)

  • 2007年04月
    -
    2009年03月

    東京大学, 生産技術研究所, 日本学術振興会 特別研究員(PD)

  • 2007年08月
    -
    2009年01月

    カリフォルニア大学バークレー校, 化学科, 客員研究員

  • 2009年04月
    -
    2014年03月

    東京大学, 生産技術研究所, 助教

  • 2010年10月
    -
    2014年05月

    科学技術振興機構, ERATO 研究総括補佐

全件表示 >>

学歴 【 表示 / 非表示

  • 1997年04月
    -
    2001年03月

    東京大学, 工学部, 機械情報工学科

    大学, 卒業

  • 2001年04月
    -
    2006年03月

    東京大学, 情報理工学系研究科, 知能機械情報学専攻

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 博士(情報理工学), 東京大学, 課程, 2006年03月

    マイクロ構造体の順序付き自己組立て

 

研究分野 【 表示 / 非表示

  • ナノテク・材料 / ナノマイクロシステム

  • 情報通信 / 機械力学、メカトロニクス

  • 情報通信 / ロボティクス、知能機械システム

  • ライフサイエンス / 生体医工学

  • ライフサイエンス / 生体材料学

研究キーワード 【 表示 / 非表示

  • マイクロナノシステム

  • マイクロ流体工学

  • 自己組織化

  • ソフトマテリアル

  • 組織工学

 

著書 【 表示 / 非表示

  • マイクロ・ナノ熱工学の進展

    吉田光輝, 尾上弘晃, NTS, 2021年05月

    担当範囲: 熱駆動マイクロゲルデバイス,  担当ページ: 505-513

  • Integrated microsystems for bridging multiscale elements

    Yoshida K., Onoe H., Advances in Chemical Engineering, 2021年01月

     概要を見る

    Hydrogels are emerging as enabling materials for a wide range of new applications for soft robots because of their flexibility. Some of the polymer chains that make up the hydrogel have a nano-scale function of swelling and contracting in response to external stimuli. In addition, because the network of polymer chains is on the nanometer order, it is possible to encapsulate various functional materials. Therefore, stimulus-responsive hydrogels and functional materials encapsulating hydrogels are also being actively studied for use as soft robot components. From a fundamentals point of view, the nano-scale functions of hydrogels, fabrication method, and integration with functional materials must be considered for each specific application. This section provides a basic understanding of hydrogels and the recent development of novel fabrication and integration of hydrogel with functional materials such as magnetic nanoparticles, Pt catalyst, graphene, photonic colloidal crystal, and living cells.

  • Microspring Fabrication by Anisotropic Gelation (Micro and Nano Fabrication Technology)

    Hiroaki Onoe, Koki Yoshida, Springer Nature Singapore, 2018年04月

    担当範囲: pp. 1-20

  • ハイドロゲルをマイクロスケールで精密加工するには?(ゲル化・増粘剤の使い方,選び方 事例集)

    中島駿介,尾上 弘晃, 技術情報協会, 2018年02月

    担当範囲: pp. 374-382

  • Fabrication of 3D cellular tissue utilizing MEMS technologies (Hyper Bio Assembler for 3D Cellular Systems)

    Shotaro Yoshida, Daniela Serien, Fumiaki Tomoike, Hiroaki Onoe, Shoji Takeuchi, Springer, 2015年07月

    担当範囲: pp. 177-202

全件表示 >>

論文 【 表示 / 非表示

  • Adeno-Associated Virus-Encapsulated Alginate Microspheres Loaded in Collagen Gel Carriers for Localized Gene Transfer

    Kurashina Y., Kurihara S., Kubota T., Takatsuka S., Hirabayashi M., Shimmura H., Miyahara H., Hioki A., Matsushita Y., Muramatsu J., Ogawa Y., Fujioka M., Okano H.J., Onoe H.

    Advanced Healthcare Materials (Advanced Healthcare Materials)  13 ( 12 )  2024年05月

    ISSN  21922640

     概要を見る

    This work reports localized in vivo gene transfer by biodegradation of the adeno-associated virus-encapsulating alginate microspheres (AAV-AMs) loaded in collagen gel carriers. AAV-AMs are centrifugally synthesized by ejecting a mixed pre-gel solution of alginate and AAV to CaCl2 solution to form an ionically cross-linked hydrogel microsphere immediately. The AAV-AMs are able to preserve the AAV without diffusing out even after spreading them on the cells, and the AAV is released and transfected by the degradation of the alginate microsphere. In addition, AAV-AMs can be stored by cryopreservation until use. By implanting this highly convenient AAV-encapsulated hydrogel, AAV-AMs can be loaded into collagen gel carriers to fix the position of the implanted AAV-AMs and achieve localized gene transfer in vivo. In vivo experiments show that the AAV-AMs loaded in collagen gel carriers are demonstrated to release the encapsulated AAV for gene transfer in the buttocks muscles of mice. While conventional injections caused gene transfer to the entire surrounding tissue, the biodegradation of AAV-AMs shows that gene transfer is achieved locally to the muscles. This means that the proposed AAV-loaded system is shown to be a superior method for selective gene transfer.

  • Light-Triggered Transmittance Control in Thermoresponsive Hydrogels by Femtosecond Laser Direct Writing

    Kashikawa K., Tomikawa H., Onoe H., Terakawa M.

    ACS Applied Optical Materials (ACS Applied Optical Materials)  2 ( 4 ) 565 - 573 2024年04月

     概要を見る

    Thermoresponsive hydrogels, which exhibit changes in their optical properties and volume due to temperature variations, are promising candidates for applications in soft devices. In this study, we demonstrate the modulation of transmittance in a thermoresponsive hydrogel through light stimulation employing gold microstructures fabricated via multiphoton photoreduction. The spatial integration of photoresponsiveness, attributed to high-density gold nanoparticles within the thermoresponsive hydrogel, was accomplished through the high-speed laser scanning of femtosecond laser pulses. The temperature measurement during the fabrication of the gold microstructure revealed that the high-speed and multiple scanning over the same path effectively reduced the temperature in the irradiated area of femtosecond laser pulses. The present approach enabled the mitigation of thermal effects during the fabrication, resulting in minimizing distortion in the fine lines of the structures. Upon exposure to stimulus light, a rapid change in the transmittance of the region where the structures were fabricated was prominently observed. The present method unveils a promising avenue for the advancement of light-responsive soft devices.

  • In-line micro-spectrometer with a structural color polymer filter for the color and concentration monitoring system

    Nishita S., Onoe H.

    Sensors and Actuators A: Physical (Sensors and Actuators A: Physical)  367 2024年03月

    ISSN  09244247

     概要を見る

    Monitoring systems for color and concentration of liquids have an important role in improving the fabrication process stably, not only in pipelines but also in microchannels. Our suggested in-line micro-spectrometer with an elastic structural color filter has detectability for color and concentration changes with a 40-mm size. The sequence of our device is the following: (1) the elastic structural color filter splits the white light from an LED, (2) the split light transmits the sample liquid, and (3) a photodiode receives the transmitted light. The structural color polymer is mechanically compressed inside the micro-spectrometer, leading to fixing the optical path even though the light wavelength is changed continuously. We fabricated the elastic structural color polymer with 200 nm silica nanoparticles and PEGPEA (poly- (ethylene glycol) phenyl ether acrylate). The prototype of the in-line micro-spectrometer with a red (λ = 596 nm) filter showed the detectability of the difference between yellow and green dyes. Moreover, the micro-spectrometer successfully distinguished the concentration of green-dyed water. This proposed in-line micro-spectrometer would contribute to developing in-line microfluidic color monitoring systems for biochemical analyses and material production.

  • Mucin-Layer-Secreting in Vitro Intestinal Tube-Shaped Device with Cryptic Structure for Bacterial Co-Culture

    Uramoto S., Tanaka S., Itai S., Onoe H.

    Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS))     485 - 488 2024年

    ISSN  10846999

     概要を見る

    We propose an in vitro intestinal tube-shaped device with a secreted mucin layer that enables us to achieve stable and continuous co-culturing with bacteria. Our tube-shaped device is made of collagen hydrogel and has 3D crypt-like structures created by electrolytically generated microbubbles. Bacterial suspension can be perfused via glass/silicone tubes attached at both ends of the tube device. Supply of culture medium diffused from the outside of the tube ensures a stable culture of Caco-2 and HT29 cells on the inside of the tube. We confirmed that HT29 cells mainly secreted a mucin layer in the apical portion of cryptic structures that spatially separates the intestinal cells and bacteria as seen in vivo environments. As a result, the co-culture of intestinal cells and lactobacillus in vitro was demonstrated in the 3D crypt-like structures in our intestinal tube-shaped device.

  • Entirely Biodegradable Wireless pH Sensor with Split-Ring Resonators for Soil pH Monitoring

    Sakabe K., Kan T., Onoe H.

    Advanced Materials Technologies (Advanced Materials Technologies)  2024年

     概要を見る

    This paper describes a wireless and battery-free soil pH sensor made entirely of degradable materials. Soil pH monitoring is significant for precision agriculture and environmental conservation because soil health can be estimated by measuring soil pH. Soil pH can be measured by collecting soil samples and analyzing them in a laboratory environment or by inserting an electrode-type sensor into the soil and measuring soil pH on site. However, neither method is suitable for wide-area soil pH sensing for precision agriculture or environmental conservation. Herein, a fully biodegradable wireless pH sensor is presented that can be dispersed to outdoor environment to detect soil acidity. The sensor is operated wirelessly through split-ring resonators (SRRs) that consist of patterned octacalcium phosphate (OCP)-coated magnesium (Mg) on a poly-lactic acid (PLA) sheet. At acidic soil pH, the degradation of each SRR results in a change in the electromagnetic response of the sensor. The operation of the sensor in six different types of acidic soils is demonstrated to distinguish the acidic soil wirelessly. It is expected that the biodegradable sensor can be applied to low-cost, easy-to-use, and environmentally friendly monitoring of soil pH.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

総説・解説等 【 表示 / 非表示

  • Can nanoparticles enhance drug-delivery performance of hydrogels?

    Rossi F., Kurashina Y., Onoe H.

    Nanomedicine (Nanomedicine)  18 ( 8 ) 653 - 657 2023年04月

    ISSN  17435889

  • 3次元灌流共培養のためのマイクロゲルチューブデバイス

    板井駿,尾上弘晃

    ケミカルエンジニヤリング 63 ( 11 ) 52 - 57 2018年11月

    記事・総説・解説・論説等(商業誌、新聞、ウェブメディア), 共著

  • 細胞ファイバの形成技術と再生組織移植への応用

    尾上弘晃, 興津輝

    実験医学 33 ( 8 ) 1235 - 1241 2015年

    記事・総説・解説・論説等(商業誌、新聞、ウェブメディア), 共著

  • 生体組織構築のための細胞ファイバ技術

    尾上弘晃, 竹内昌治

    生物物理 55 ( 4 ) 206 - 207 2015年

    記事・総説・解説・論説等(商業誌、新聞、ウェブメディア), 共著

  • 曲面や粗面をつかむロボットハンドの実現に求められる樹脂吸盤 –そのニーズと開発事例-

    西田知司, 尾上弘晃

    MATERIAL STAGE 15 ( 3 ) 63 - 67 2015年

    記事・総説・解説・論説等(商業誌、新聞、ウェブメディア), 共著

全件表示 >>

研究発表 【 表示 / 非表示

  • Microfluidic reflective display with primary color sub-pixels

    Junpei Muramatsu, Hiroaki Onoe

    The 33rd International Conference on Micro Electro Mechanical Systems (MEMS 2020), 

    2020年01月

    ポスター発表

  • One-step fabrication of multi-functional core-shell Janus microparticles for theranostics application

    Mio Tsuchiya, Yuta Kurashina, Yun Jung Heo, Hiroaki Onoe

    The 33rd International Conference on Micro Electro Mechanical Systems (MEMS 2020), 

    2020年01月

    口頭発表(一般)

  • ECM-based gradient generator for tunable surface environment by interstitial flow

    Azusa Shimizu, Wei H. Goh, Rahul Karyappa, Michinao Hashimoto, Hiroaki Onoe

    The 33rd International Conference on Micro Electro Mechanical Systems (MEMS 2020), 

    2020年01月

    口頭発表(一般)

  • Locally bendable stimuli-responsive hydrogel actuator with axially patterned functional materials

    Nobuki Takeuchi, Shunsuke Nakajima, Yutaka Hori, Ryuji Kawano, Hiroaki Onoe

    The 33rd International Conference on Micro Electro Mechanical Systems (MEMS 2020), 

    2020年01月

    口頭発表(一般)

  • pNIPAM/SWCNT-based hydrogel micro-gripper driven by infrared light for intravascular surgery

    Takaya Kuroda, Hiroaki Onoe

    The 33rd International Conference on Micro Electro Mechanical Systems (MEMS 2020), 

    2020年01月

    ポスター発表

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 三次元組織の高度成熟化を自律的に達成する知能化培養システム基盤の創出

    2023年04月
    -
    2026年03月

    尾上 弘晃, 基盤研究(A), 補助金,  研究代表者

  • 機械的メタマテリアルとDNAゲルの融合による生化学構造色センサの高感度化

    2021年07月
    -
    2024年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 尾上 弘晃, 挑戦的研究(開拓), 補助金,  研究代表者

  • 力学刺激の知能化によるin vitro3次元組織の超効率的成熟化

    2019年04月
    -
    2022年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 尾上 弘晃, 基盤研究(A), 補助金,  研究代表者

  • ナノグルコースセンサが取り込まれた人工組織の開発

    2016年09月
    -
    2018年03月

    日本学術振興会, 科学研究費補助金(文部科学省・日本学術振興会), 補助金,  研究代表者

  • 炎症が惹起する神経変性機構解明のためのヒト血液脳関門の構築

    2016年04月
    -
    2018年03月

    日本学術振興会, 科学研究費補助金(文部科学省・日本学術振興会), 根岸みどり, 補助金,  研究分担者

全件表示 >>

Works 【 表示 / 非表示

  • Biohybird Art

    Biohybrid Art Lab with Fu Tsurumaki

    Spiral Independent Creator’s Festival, 2011, 

    2010年05月

    その他, 共同

知的財産権等 【 表示 / 非表示

  • 給電型遠心駆動微小液滴生成装置およびその生成物

    出願日: 特願2018-76379  2018年05月 

    特許権, 共同

  • 多層構造体とその製造方法及び利用方法

    出願日: 特願2017-92602  2017年05月 

    特許権, 共同

  • 刺激応答性ファイバ,刺激応答性ファイバの製造方法,及び刺激応答性ファイバの製造装置

    出願日: 特願2016-199517  2016年10月 

    特許権, 単独

  • カラーフィルタ、これを用いた表示装置、及びカラーフィルタの作製方法

    出願日: 特願2016-10932  2016年01月 

    特許権, 共同

  • マイクロビーズ及びその製造方法

    出願日: 特願2015-210971  2015年10月 

    特許権, 共同

全件表示 >>

受賞 【 表示 / 非表示

  • 文部科学大臣表彰 若手科学者賞

    2017年04月, 文部科学省, マイクロ加工技術を利用した人工生体組織構築の研究

  • 第4回新化学技術研究奨励賞

    尾上弘晃, 2014年05月, 公益財団法人 新化学技術推進協会, マイクロゲルファイバのself-foldingによる複合3次元機能材料構築法の創生

  • Outstanding paper award

    1. Yuya Morimoto, Hiroaki Onoe, Shoji Takeuchi, 2013年, Twenty Sixth International Conference on Micro Electro Mechanical Systems, Muscle Based Bioactuator Driven in Air

    受賞区分: 国内外の国際的学術賞

  • 五十嵐賞(最優秀講演賞)

    2011年09月, 電気学会センサ・マイクロマシン部門, 細胞ファイバーによるセンチメートルスケール三次元組織の構築

  • JIEP best paper award

    3. Tetsuo Kan, Yusuke Takei, Hiroaki Onoe, Eiji Iwase, Tetsuji Dohi, Kiyoshi Matsumoto, Isao Shimoyama, 2009年, The International Conference on Electronics Packaging, Nano-Mechanical Structure Fabrication Technology for Highly Integrated, Complex MEMS

    受賞区分: 国内外の国際的学術賞

全件表示 >>

 

担当授業科目 【 表示 / 非表示

  • マルチディシプリナリ・デザイン科学特別講義

    2024年度

  • 理工学基礎実験

    2024年度

  • 材料力学の基礎

    2024年度

  • 総合デザイン工学課題研究

    2024年度

  • 交換協定課題研究B

    2024年度

全件表示 >>

担当経験のある授業科目 【 表示 / 非表示

  • 機械工学実験

    慶應義塾

    2015年04月
    -
    2016年03月

    春学期, 実習・実験, 兼任, 3時間, 140人

  • 機械工学創造演習

    慶應義塾

    2015年04月
    -
    2016年03月

    秋学期, 演習, 兼任, 2時間, 140人

  • 理工学基礎実験

    慶應義塾

    2015年04月
    -
    2016年03月

    春学期, 実習・実験, 兼任, 2時間

  • プロダクションエンジニアリング

    慶應義塾

    2015年04月
    -
    2016年03月

    春学期, 演習, 兼任, 2時間, 140人

  • 機械工学創造演習

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期, 演習

全件表示 >>

 

所属学協会 【 表示 / 非表示

  • IEEE, 

    2016年
    -
    継続中
  • 電気学会, 

    2016年
    -
    継続中
  • 日本機械学会, 

    2013年
    -
    継続中
  • 化学とマイクロ・ナノシステム学会, 

    2010年
    -
    継続中
  • 日本生物物理学会, 

    2009年
    -
    継続中

委員歴 【 表示 / 非表示

  • 2017年04月
    -
    継続中

    広報担当・幹事, 日本機械学会マイクロ・ナノ工学部門 総務委員会

  • 2017年02月
    -
    2018年01月

    主査, 電気学会 第34回センサ・マイクロマシンと応用システムシンポジウム論文委員会

  • 2017年02月
    -
    2018年01月

    広報委員, 日本機械学会 第8回マイクロ・ナノ工学 実行委員会

  • 2017年01月
    -
    2019年12月

    委員, 電気学会 立体構造や柔軟材料への微細加工、実装技術に関する若手研究者を中心とした調査専門委員会

  • 2016年02月
    -
    2017年01月

    副主査, 電気学会 第33回センサ・マイクロマシンと応用システムシンポジウム論文委員会

全件表示 >>