Iida, Norimasa

写真a

Affiliation

Faculty of Science and Technology (Mita)

Position

Professor Emeritus

Related Websites

External Links

Profile 【 Display / hide

  • Prof. Iida has been an innovative leader in the field of high thermal efficiency, low emission combustion engines for over 30 years. His work has been based on experimental combustion diagnostics using both optical and conventional techniques, detailed numerical simulations, and on-board emissions measurement. Through this work he has made significant contributions to the science and techniques used for engine research, to our understanding of the operation of advanced engine combustion technologies, and to policies and practices that can reduce urban air pollution. Prof. Iida joined Kanagawa Academy of Science and Technology (KAST) in 1988, where as a project leader he developed a low heat rejection ceramic two-stoke methanol engine. His novel prototype engine used the ATAC (Active Thermo Atmosphere Combustion) combustion concept, which was the forerunner of more recent HCCI combustion concepts. This work was foundational to both Prof. Iida's future research as well as to the massive effort in HCCI combustion expended by the research and development community during the last two decades. Based on this experience in KAST, he became deeply involved in Homogeneous Charge Compression Ignition (HCCI) engine research, and performed a number of groundbreaking studies analyzing HCCI combustion. In this work, Prof. Iida combined experiments using new measurement techniques with simulation and analysis using detailed chemical kinetics – leading to significant advances in our understanding of fuel effects on HCCI combustion and to the development of new control techniques. This work led to numerous publications in SAE, JSAE, and JSME journals which have significantly impacted the work of other researchers. The quality and influence of this work is demonstrated by hundreds of citations and by the many awards (10) these papers have received, including the High Quality Paper Award of the Small Engine Technology Conference in 2005 and the Outstanding Technical Paper Award of the JSAE in 2008. Apart from these combustion studies, Prof. Iida has made significant contributions in other technical areas. He has performed considerable work in life-cycle energy use assessment for next generation vehicles and in on-board emission measurements. In the latter area, he has evaluated the real-world emissions of nitrogen oxide and particulate matter exhausted from diesel freight vehicles and proposed a solution to improve local air pollution. In addition to these technical contributions, Prof. Iida also has a prolonged record of supporting professional societies and the mobility community.

Career 【 Display / hide

  • 1977.09
    -
    1978.03

    慶應義塾中等部, 講師

  • 1978.09
    -
    1980.03

    北里大学薬学部, 非常勤講師

  • 1978.11
    -
    1980.03

    東京都 東京身体障害者職業訓練校, 工業彫刻科, 講師

  • 1979.11
    -
    1980.03

    慶應義塾高等学校, 非常勤講師

  • 1980.04
    -
    1985.03

    慶應義塾大学工学部, 機械工学科, 助手

display all >>

Academic Background 【 Display / hide

  • 1969.04
    -
    1973.03

    Keio University, Faculty of Engineering, Department of Mechanical Engineering

    University, Graduated

  • 1973.04
    -
    1975.03

    Keio University, Graduate School, Division of Engineering, Mechanical Engineering

    Graduate School, Completed, Master's course

  • 1975.04
    -
    1980.03

    Keio University, Graduate School, Division of Engineering, Mechanical Engineering

    Graduate School, Withdrawal after completion of doctoral course requirements, Doctoral course

Academic Degrees 【 Display / hide

  • Ph.D. in engineering, Keio University, 1983.09

    Premixed Flame Propagation into a Narrow Channel at High Speed

  • 工学 , Keio University, Coursework, 1983.09

    容器内から狭い流路を経て伝ぱする予混合火炎に関する研究

 

Books 【 Display / hide

  • DME Handbook English edition

    Norimasa Iida, Ohmsha, 2007.10

    Scope: 73-81, 259-262

     View Summary

    Chapter3 Combustion and reforming characteristics of DME /3.2.2 Ignition and 3.2.3 Combustion reaction scheme, Chapter5 DME utilization technologies

  • HCCI and CAI engines for the automotive industry

    H. Zhao, P. Duret, J. Yang, A. Furhapter, P. Tunestal and B. Johansson, N. Milovanovic, G. T. Kalghatgi, J. V. Pastor and J. M. Lujan and S. Molina and J. M. Garcia, Y. Aoyagi, B. Gatellier, S. Kimura, T. W. Tyan III, N. Iida, C. K. Westbrook and W. J. Pitz, S. M. Aceves and D. L. Flowers and R. W. Dibble and A. Babajimopoulos, M. Richter, Woodhead Publishing Ltd / CRC Press LLC, 2007

    Scope: 365-430

     View Summary

    Chapter15: Natural gas HCCI engines, Chapter16: HCCI engines with other fuels

  • DMEハンドブック

    IIDA NORIMASA, オーム社, 2006.04

    Scope: 66-74, 244-247

     View Summary

    第3章DMEの燃焼特性と改質特性,3.2.2着火,3.2.3燃焼反応機構,および,第5章 5.3.3予混合圧縮自己着火機関におけるDME燃焼 の執筆を担当した

  • 環境圏の新しい燃焼工学

    飯田訓正, フジ・テクノシステム, 1999.12

    Scope: 434-450

     View Summary

    第1編 燃焼現象の化学,第4章 燃焼モデル・解析技術・シミュレーション,第2節 燃焼の可視化 を執筆した

  • 自動車用語和英辞典

    山川新二ほか国内のエンジン研究者24名による共著, (社)自動車技術会, 1997.04

     View Summary

    自動車用語和英辞典出版委員会および第2分野用語統一委員会(エンジン、熱工学)委員として企画編集および執筆活動を行なった。

display all >>

Papers 【 Display / hide

  • A Potentiality of Dedicated EGR System for Improving Thermal Efficiency in Natural Gas SI Engines

    Sejun Lee, Kyohei Ozaki, Takahiro Sako, Norimasa Iida

    International Journal of Automotive Engineering (JSAE)  6 ( 1 ) 15 - 22 2015.03

    Research paper (international conference proceedings), Joint Work, Accepted,  ISSN  2185-0984

     View Summary

    Object of this study is to realize improving thermal efficiency and emission reduction with low temperature combustion. EGR is a solution to low temperature combustion, however it occurs burning velocity decrease. To prevent this phenomenon, Dedicated EGR was adjusted to SI engine run by natural gas. The entire exhaust gas of a single cylinder operated by the equivalence ratio varied from lean to rich was recirculated to the other cylinders. Due to H2 and CO included in EGR, slowed burning velocity problem was overcome with increasing degree of constant volume, thus thermal efficiency could be improved.

  • A study on the spray and engine combustion characteristics of diesel–dimethyl ether fuel blends

    Ock Taeck Lim and Norimasa Iida

    Proc IMechE Part D: J Automobile Engineering (IMechE)  229 ( 6 ) 782 - 792 2015.03

    Accepted

     View Summary

    The purpose of this study was to compare the spray characteristics, the combustion characteristics and the emissions (nitrogen oxides, carbon monoxide, hydrocarbon and smoke) of typical fuels (100% diesel and 100% dimethyl ether) and diesel–dimethyl ether fuel blends in a constant-volume chamber and a single-cylinder direct-injection diesel engine. The spray characteristics were investigated by varying the ambient pressure and the fuel injection pressure using a commonrail fuel injection system with various fuel mixture ratios. The spray characteristic research parameters were the spray shape, the penetration length and the spray angle at the seven-hole injector. Common types of injector were used (Bosch). Two types of fuel blended by mass fraction were employed. Typical fuels (100% diesel and 100% dimethyl ether) and fuel blends with diesel:dimethyl ether mixture ratios of 95:5 and 90:10 were used. The injection pressure was fixed at 70 MPa while the ambient pressure was varied (0 MPa, 2.5 MPa and 5 MPa). The combustion experiments were conducted in a single-cylinder engine equipped with a common rail. The injection pressure was 700 bar at 1200 r/min. The amount of injected fuel was adjusted to obtain a fixed input calorific value of 972.2 J/cycle in order to make a comparison
    between the fuel types. The results showed that the injection quantity was greater with diesel fuel but not for dimethyl ether fuel and for the fuel blend with the higher mixing ratio. The spray penetration length increased with increasing ambient pressure for diesel but decreased for dimethyl ether with a larger spray angle. The ignition delay and the heat release rate decreased with increasing dimethyl ether which led to a higher indicated mean effective pressure and higher thermal efficiency because there was less negative work in the expansion. The total hydrocarbon emissions and the carbon monoxide emissions decreased with increasing dimethyl ether, but the nitrogen oxide emissions generated were greater owing to the increased combustion temperature.

  • Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard

    Dongwon Jung, Norimasa Iida

    Applied Energy (Elsevier Inc.)  138 ( issue C ) 315 - 330 2015.02

    Research paper (scientific journal), Accepted,  ISSN  0306-2619

     View Summary

    This study experimentally investigates the effects of the combustion phasing on the homogeneous charge compression ignition (HCCI) combustion, and implements a closed-loop control of HCCI combustion to reduce pressure-rise rate (PRR) with combustion-phasing retard. The experiments were conducted using dimethyl ether (DME) in a single-cylinder HCCI research engine equipped with an exhaust gas recirculation (EGR) loop for external EGR and a two-stage exhaust cam for rebreathed EGR. The results show that a maximum PRR (PRRmax) and a maximum in-cylinder charge temperature decreases with combustionphasing retard. However, excessive combustion-phasing retard leads to unacceptable coefficient of variation (COV) of CA50 and IMEP with partial-burn and/or misfire cycles. To dampen increasing cycleto-
    cycle variations around the limit of combustion-phasing retard, the closed-loop control of HCCI
    combustion was implemented using three feedback variables. Finally, stable stoichiometric HCCI
    operation could be achieved with extensive combustion-phasing retard while maintaining acceptable PRRmax with the higher level of IMEP.

  • The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine

    Nguyen Ba Hung, Ocktaeck Lim, Norimasa Iida

    Applied Energy (Elsevier Ltd.)  137 ( issue C ) 385 - 401 2015.01

    Research paper (scientific journal), Joint Work, Accepted,  ISSN  0306-2619

     View Summary

    An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much.
    Beside the successful SI-HCCI transition, the increase of intake pressure from Pin = 1.1 bar to Pin = 1.6 bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (Pin = 1.6 bar), the engine knocking problem is occurred. Adjusting spring stiffness from k = 2.9 N/mm to k = 14.7 N/mm is also considered one of useful solutions for reducing the peak in-cylinder temperature in HCCI mode as well as avoiding engine knock. Besides, the change of spark timing is suggested as a benefic method to help the control of the SI-HCCI transition to be more convenient. To get a successful SI-HCCI transition with reducing of peak temperature in HCCI mode as well as avoiding engine knock, the simulation results show that the engine should be operated with following conditions: equivalence ratio / = 0.7, engine load RL = 180 X, intake temperature Tin = 400 K, intake pressure Pin = 1.2 bar, spark timing in SI mode xig = 3 mm and spring stiffness k = 14.7 N/mm.

  • A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

    Sejun Lee, Kyohei Ozaki, Norimasa Iida, Takakiro Sako

    SAE Int. J. Engines (SAE International)  SAE 2014-32-0108 /JSAE 2014901 ( 8(1) ) 230 - 237 2014.11

    Research paper (international conference proceedings), Joint Work, Accepted,  ISSN  1946-3936

     View Summary

    Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four
    cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with
    conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high
    D-EGR ratio 0.25.
    In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed
    understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed
    engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with
    various equivalence ratios from 0.6-1.0. To study the effect of D-EGR ratio, the number of engine cylinders was considered from 3 to 6, same meaning with D-EGR ratio 0.5-0.2. A Laminar burning velocity and a flame temperature were considered to analyze thermal efficiency and NOx emission.
    The results show that D-EGR system is able to make a similar level of thermal efficiency to that of conventional SI
    engines. NOx emission were reduced by decreasing flame temperature while the laminar burning velocity was increased
    without flame temperature rising due to the influence of H2 and CO that were included in EGR gas as intermediates.

display all >>

Presentations 【 Display / hide

  • Potential for the High Efficiency of Natural Gas SI Engine by “Dedicated EGR”

    Kenji Sugata, Sejun Lee, Takahiro Sako, Mina Nishi, Norimasa Iida

    自動車技術会関東支部2014年度学術研究講演会 (千葉大学 西千葉キャンパス) , 

    2015.03

    Oral presentation (general), 公益社団法人 自動車技術会

     View Summary

    EGR realizes low temperature combustion and reduces heat loss, on the other hand, thermal efficiency decreases by burning velocity deterioration under heavy EGR operation. T.Alger et al. in SwRI proposed ”Dedicated EGR”(d-EGR) that is running one or more cylinders rich and routing 100% of that cylinder’s exhaust directly into others, and it generates significant amount of CO and H2 that promote burning velocity. This research aims to improve thermal efficiency and inspect fuel ignitability by advancing ignition timing, and clarify the operable conditions of the natural gas SI engine using d-EGR.

  • Effects of EGR Dilution on Pressure Rise Rate in HCCI Engines

    Takahide Matsui, Hiroki Ikeda, Mina Nishi, Norimasa Iida

    自動車技術会関東支部2015年度学術研究講演会 (千葉大学 西千葉キャンパス) , 

    2015.03

    Oral presentation (general), 公益社団法人 自動車技術会

     View Summary

    Homogeneous Charge Compression Ignition (HCCI) engine has attracted considerable interest as a new combustion concept for internal engines in recent years because of high efficiency and clean combustion. However its operation range is limited by the knocking at high load, which results from an excessive pressure rise rate(PRR). And, exhaust gas recirculation(EGR) is good method to achieve Low Temperature Combustion. The purpose of this study is to investigate the effects of EGR and CH2O addition under constant amount of fuel on PRR . To do so, numerical analysis combustion experiment with rapid compression machine(RCM) were done. The results show that EGR under constant amount of fuel on PRR had an effect on PRR because of increasing heat capacity, and CH2O addition under constant amount of fuel had not an effect on PRR but had an effect on combustion timing.

  • Investigation of Fuel and Temperature Distribution Effect on Auto-ignition Timing in SI Engine.

    Keisuke Shimizu,Keito Negoro,Seki Yuich, Katuya Matuura, Yoshihisa Sato,Norimasa Iida,Mina Nishi

    自動車技術会関東支部2015年度学術研究講演会 (千葉大学 西千葉キャンパス) , 

    2015.03

    Oral presentation (general), 公益社団法人 自動車技術会

     View Summary

    The supercharge downsizing of the engine become easy to raise a Low Speed Pre-Ignition at the time supercharge and high compression ratio. Therefore it jets the fuel which is in a liquid directly in a combustion chamber, and a technique to lower gas temperature by evaporation latent heat, and to prevent a Low Speed Pre-Ignition is important. Direct injection system makes heterogeneous air-fuel mixture This study show that investigation of the influence that the heterogeneous air-fuel mixture gives for auto-ignition and the relationship between heterogeneous air-fuel mixture and the Low Speed Pre-Ignition.

  • Investigation into influence that the non-homogeneity of local fuel levels in the HCCI engine gives for combustion- Fuel levels distribution measurement using the LIF method -

    Shuichi Konno, Hiroshi Mizokami, Norimasa Iida, Mina Nishi

    自動車技術会関東支部2014年度学術研究講演会 (千葉大学 西千葉キャンパス) , 

    2015.03

    Oral presentation (general), 公益社団法人 自動車技術会

     View Summary

    HCCI engine has a problem that knocking rises at high load. It is necessary to scatter reaction time of the pre-air-fuel mixture every local site in the combustion chamber as this solution technique.As the technique, heterogeneous aeration of the fuel has been performed and a reduction effect of the pressure rate of climb at the time of the HCCI combustion has been inspected. LIF method has been performed for a measurement of the fuel levels distribution in this study and investigated fuel density distribution from intensity of fluorescence in the fuel homogeneous technique, fuel heterogeneity aeration technique and performed the comparison with the firing combustion process.

  • Numerical simulation about the carbon deposition of the internal steam reforming of solid oxide fuel cell

    Kenshi Nishikawa, Mina Nishi, Iida Norimasa

    自動車技術会関東支部2014年度学術研究講演会 (千葉大学 西千葉キャンパス) , 

    2015.03

    Oral presentation (general), 公益社団法人 自動車技術会

     View Summary

    Steam reforming is an endothermic reaction and needs high-temperature heat source. SOFC can make direct internal reforming possible, since its operation temperature is very high as 973.15 to 1273.15K and it brings out steam reforming inside the fuel cell using exhaust heat. However the direct internal reforming has a problem that the carbon deposition occurs at the anode, and it causes lowering of operating voltage. In this study, we reproduce the microstructure of the SOFC anode theoretically, and find out the condition for the carbon deposition by reproducing steam reforming on the Ni surface using numerical calculation with elementary reactions.

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • SIP Research and Development on Super Lean Burn Concept for Gasoline Engines with High Thermal Efficiency

    2014.10
    -
    2019.03

    内閣府「総合科学技術・イノベーション会議(CSTI)」, Cross-ministrerial Strategic Inovation Promotion Program, Commissioned research, Principal investigator

     View Summary

    スーパーリーンバーン技術の実現に向けた研究開発を行う。具体的には、①超希薄・高流動条件下で着火可能な点火システム、②タンブル流最適化による火炎伝播促進、③壁面熱伝達機構の解明に基づく冷却損失低減、④化学反応論的アプローチによるノッキング制御コンセプト創出の研究開発に取り組む。

    スーパーリーンバーン技術の実現に向けた研究開発を行う。具体的には、
    ①超希薄・高流動条件下で着火可能な点火システム
    ②タンブル流最適化による火炎伝播促進
    ③壁面熱伝達機構の解明に基づく冷却損失低減
    ④化学反応論的アプローチによるノッキング制御コンセプト創出
    の研究開発に取り組む。

     View Remarks

    SIPは、府省・分野の枠を超えた横断型のプログラムであり、総合科学技術・イノベーション会議が対象となる課題を特定し、予算を重点配分します。課題ごとにPD(プログラムディレクター)を選定し、基礎研究から出口(実用化・事業化)までを見据え、規制・制度改革や特区制度の活用なども視野に入れて推進していくものです。
    本課題「革新的燃焼技術」は、乗用車用のガソリンエンジンおよびディーゼルエンジンを対象とし最大の正味熱効率50%(現在はガソリンエンジン39%、ディーゼルエンジン43%)を実現することにより、二酸化炭素の排出量を大幅削減するとともに、日本の自動車産業の競争力の維持・強化、世界トップレベルの内燃機関研究者の育成を図ることを目的としています。今年度は、ガソリン燃焼チーム、ディーゼル燃焼チーム、制御チーム、損失低減チームの4つのチームおよび革新的要素技術の6つの研究開発課題の研究開発を開始します(研究開発期間:5年、年間研究開発費:2~5億円/チーム、1,000万円/革新的要素技術)

Works 【 Display / hide

  • 慶應義塾大学システムデザイン工学科における設計・製図・もの作り教育の一事例

    AOYAMA HIDEKI, AOYAMA TOJIRO, IIDA NORIMASA, HISHIDA KOICHI

    日本, 

    2002.08
    -
    Present

    Other, Joint

     View Details

    本報では,慶應義塾大学理工学部システムデザイン工学科のカリキュラムの全体概要を述べ,その中で直接的なもの作り(設計・製図・製作・評価)カリキュラムとして組込まれているデザインリテラシー演習とシステムデザイン工学演習の教育目標や内容について説明する。

  • 3.エンジンシステムと環境

    IIDA NORIMASA

    慶應義塾大学理工学部, 

    1995.04
    -
    Present

    Other, Single

  • デザインリテラシー演習 資料

    AOYAMA HIDEKI, AOYAMA TOJIRO, IIDA NORIMASA, HISHIDA KOICHI

    慶應義塾大学理工学部, 

    1995.04
    -
    Present

    Other, Joint

  • 連載/私の留学生活記 エスケープ・トゥ・ウィスコンシン

    飯田訓正

    1987.08
    -
    Present

    Other, Joint

     View Details

    米国ウィスコンシン大学に昭和60年9月7日より一年間留学,当大学の内燃機関研究室 (Internal Combudtion Engine Research Laboratory) に所属して,Prof. Philip S.Myersの指導の下に,Prof. Gary L.Bormanと共にセラミック断熱ディーゼルエンジンにおける熱伝達に関する研究を行い,昭和61年9月18日に帰国した。慶応義塾広報室広報課の依頼で,キャンパス・研究室の紹介,ウィスコンシンの気候や人々の生活,スポーツ等,留学中の生活について

Intellectual Property Rights, etc. 【 Display / hide

  • 予混合圧縮自着火エンジン

    Date applied: 特願2003-57095  2003.03 

    Date announced: 特開2004-263665   

    Patent

  • 予混合圧縮着火エンジンの起動運転方法及び予混合圧縮着火エンジン

    Date applied: 特願2003-57093  2003.03 

    Date announced: 特開2004-263663  2004 

    Date issued: 特許第4225805  2008.12

    Patent

  • エンジンの運転制御方法及びエンジン

    Date applied: 特願2003-57096  2003.03 

    Date announced: 特開2004-263666  2004 

    Patent

  • 燃料消費率算定システム

    Date applied: 特願2003-000103  2003.01 

    Patent

  • 圧縮自着火エンジン

    Date applied: 特願2000-171464  2000.06 

    Date announced: 特開2001-349221  2001 

    Date issued: 特許第4190135  2008.09

    Patent

display all >>

Awards 【 Display / hide

  • 2014 SAE Fellows

    Norimasa Iida, 2015.04, SAE International, 2014 SAE Fellows

    Type of Award: Other,  Country: United States

     View Description

    Prof. Iida was a pioneer in the research and development of Homogeneous Charge Compression Ignition (HCCI) engines. His numerous publications in this field influenced and inspired hundreds of later studies, significantly enhancing the development of these engines. He also has a sustained record of supporting the mobility community through long service to professional societies and his organization of several international symposia.

  • The Scientific Contribution Award, 64th JSAE Awards

    Norimasa Iida, 2014.05, Automotive Engineers of Japan, Inc., Contribution for High Efficiency Combustion of Internal Combustion Engine and Reduction of Emissions

     View Description

    次世代燃焼として注目される予混合圧縮着火燃焼(HCCI燃焼)に関する研究では、先駆的な研究に取り組み多くの成果を上げるとともに、国際ジャーナルに多数の論文を発表するなど同分野を牽引している。さらに、近年では都市部の沿道など局所における大気汚染解明のための研究を行い、機構の解明はもとよりその解決方法を提案する等、効果的かつ幅広い研究活動は社会的貢献が大である。また、それらの研究成果および知見を活かし、国の審議会における大気環境保全に関する活動も行なっている。これらにより、内燃機関の高効率燃焼と排出ガス低減技術に関する研究において、学術的に貢献した。

  • SETC 2013: The Best Paper Award, High Quality Paper Awards

    Yusuke Nakamura, Dong-Won Jung, Norimasa Iida (Keio University), 2013.10, Yutaka Nitta Chair JSAE Technical Committee, Dr. Robert Kee Chair SAE Technical Committee, 19th Small Engine Technology Conference 8-10 October, 2013 Taipei, Taiwan, “Closed-Loop Combustion Control of a HCCI Engine with Re-breathing EGR System”, SAE Paper 2013-32-9069 / JSAE Paper 20139069, Small Engine Technology Conference 2013 (October, 2013)

    Type of Award: International academic award (Japan or overseas),  Country: Taiwan, Province of China

     View Description

    The Best Paper Award 受賞
    19th Small Engine Technology Conference
    8-10 October, 2013 Taipei, Taiwan
    In Recognition of
    Yusuke Nakamura, Dong-Won Jung, Norimasa Iida (Keio University)
    For Best Paper
    Closed-Loop Combustion Control of a HCCI Engine with Re-breathing EGR System
    Yutaka Nitta Chair, JSAE Technical Committee
    Dr. Robert Kee Chair, SAE Technical Committee

  • (社)自動車技術会 技術部門貢献賞

    IIDA NORIMASA, 2010.08, (社)自動車技術会技術会議議長 岸本喜久雄, ディーゼル部門委員会での活動

     View Description

    あなたは技術会議ディーゼル部門委員会の活動において多大なる貢献をされましたのでここに表彰いたします

  • JSAEフェローエンジニア

    IIDA NORIMASA, 2010.02, (社)自動車技術会, 専門領域:エンジン燃焼,熱工学/研究,教育

     View Description

    (社)自動車技術会 自動車エンジニアレベル認定 第F0058号

display all >>

 

Social Activities 【 Display / hide

  • 独立行政法人 新エネルギー・産業技術総合開発機構 技術開発推進部長 久木田正次「分野横断的公的事業に係る事前書面審査(ピアレビュー)」

    2014.04
    -
    2016.03
  • 環境省 中央環境審議会専門委員

    2014.02
    -
    Present
  • 環境省/(株)数理計画「平成25年度 温室効果ガス排出量算定方法検討会-運輸分科会-」

    2013.12
    -
    2014.03
  • 環境省/(株)数理計画「平成25年度 環境対応車普及方策検討調査業務」に係る検討会

    2013.12
    -
    2014.03
  • 環境省/(株)数理計画「平成24年度 自動車排出ガス原単位及び総量算定検討調査」

    2013.12
    -
    2014.03

display all >>

Memberships in Academic Societies 【 Display / hide

  • 自動車技術会 編集会議, 

    2014.04
    -
    2016.03
  • 公益社団法人 自動車技術会関東支部, 

    2014.04
    -
    2016.03
  • 自動車技術会 技術会議, 

    2014.04
    -
    2016.03
  • 自動車技術会 技術会議, 

    2014.04
    -
    2016.03
  • 自動車技術会 技術会議, 

    2014.04
    -
    2016.03

display all >>

Committee Experiences 【 Display / hide

  • 2015.04
    -
    2017.03

    神奈川県自動車排出窒素酸化物及び粒子状物質総量削減計画策定協議会/専門委員, 神奈川県知事 黒岩 祐治

  • 2015.04
    -
    2016.03

    審査委員, スズキ財団 鈴木 修

  • 2015.04
    -
    2016.03

    九都県市低公害車指定委員会/委員, 九都県市首脳会議環境問題対策委員会 大気保全専門部会長 高橋 良彦 (千葉県環境生活部大気保全課長)

  • 2015.04
    -
    2016.03

    東京都粒子状物質減少装置指定審査会/委員, 東京都知事 舛添要一

  • 2015.03
    -
    Present

    自動車排出ガス総合対策小委員会委員長, 環境省 中央環境審議会 大気・騒音振動部会 部会長 坂本和彦

display all >>