加瀬 義高 (カセ ヨシタカ)

Kase, Yoshitaka

写真a

所属(所属キャンパス)

先端研究教育連携スクエア 殿町先端研究教育連携スクエア (三田)

職名

特任講師(有期)

特記事項

加瀬 義高

外部リンク

総合紹介 【 表示 / 非表示

  • 神経科学、神経再生、老化制御

その他の所属・職名 【 表示 / 非表示

  • 藤田医科大学研究推進本部 精神・神経病態解明センター 神経再生・創薬研究部門, 臨床再生医学講座, 講師

学位 【 表示 / 非表示

  • 医学博士, 東京大学, 課程, 2018年03月

免許・資格 【 表示 / 非表示

  • 薬剤師免許

  • 医師免許

 

研究分野 【 表示 / 非表示

  • ライフサイエンス / 内科学一般 (老年医学)

  • ライフサイエンス / 神経科学一般

  • ライフサイエンス / 生理学

  • ライフサイエンス / 脳神経外科学

研究キーワード 【 表示 / 非表示

  • 神経幹細胞、神経新生、再生医療、老化

 

著書 【 表示 / 非表示

  • [ 十訂 ] 介護支援専門員基本テキスト

    2024年06月

  • [九訂]介護支援専門員基本テキスト

    加瀬義高, 2021年06月

論文 【 表示 / 非表示

  • Spinal cord injury regenerative therapy development: integration of design of experiments.

    Neural Regeneration Research 2024年07月

    研究論文(学術雑誌), 責任著者, 査読有り

  • Chronological transitions of hepatocyte growth factor treatment effects in spinal cord injury tissue

    Inflammation and Regeneration 2024年03月

    研究論文(学術雑誌), 共著, 査読有り

  • Hepatocyte growth factor pretreatment boosts functional recovery after spinal cord injury through human iPSC-derived neural stem/progenitor cell transplantation.

    Suematsu Y, Nagoshi N, Shinozaki M, Kase Y, Saijo Y, Hashimoto S, Shibata T, Kajikawa K, Kamata Y, Ozaki M, Yasutake K, Shindo T, Shibata S, Matsumoto M, Nakamura M, Okano H

    Inflammation and regeneration (Inflammation and Regeneration)  43 ( 1 ) 50 - 50 2023年10月

    ISSN  1880-9693

     概要を見る

    Background: Human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC)-based cell transplantation has emerged as a groundbreaking method for replacing damaged neural cells and stimulating functional recovery, but its efficacy is strongly influenced by the state of the injured spinal microenvironment. This study evaluates the impact of a dual therapeutic intervention utilizing hepatocyte growth factor (HGF) and hiPSC-NS/PC transplantation on motor function restoration following spinal cord injury (SCI). Methods: Severe contusive SCI was induced in immunocompromised rats, followed by continuous administration of recombinant human HGF protein into the subarachnoid space immediately after SCI for two weeks. Acute-phase histological and RNA sequencing analyses were conducted. Nine days after the injury, hiPSC-NS/PCs were transplanted into the lesion epicenter of the injured spinal cord, and the functional and histological outcomes were determined. Results: The acute-phase HGF-treated group exhibited vascularization, diverse anti-inflammatory effects, and activation of endogenous neural stem cells after SCI, which collectively contributed to tissue preservation. Following cell transplantation into a favorable environment, the transplanted NS/PCs survived well, facilitating remyelination and neuronal regeneration in host tissues. These comprehensive effects led to substantial enhancements in motor function in the dual-therapy group compared to the single-treatment groups. Conclusions: We demonstrate that the combined therapeutic approach of HGF preconditioning and hiPSC-NS/PC transplantation enhances locomotor functional recovery post-SCI, highlighting a highly promising therapeutic strategy for acute to subacute SCI.

  • Neuroprotective Effects of Genome-Edited Human iPS Cell-Derived Neural Stem/Progenitor Cells onTraumatic Brain Injury

    Imai R., Tamura R., Yo M., Sato M., Fukumura M., Takahara K., Kase Y., Okano H., Toda M.

    Stem Cells (Stem Cells)  41 ( 6 ) 603 - 616 2023年04月

    研究論文(学術雑誌), 査読有り,  ISSN  10665099

     概要を見る

    Despite developing neurosurgical procedures, few treatment options have achieved functional recovery from traumatic brain injury (TBI). Neural stem/progenitor cells (NS/PCs) may produce a long-term effect on neurological recovery. Although induced pluripotent stem cells (iPSCs) can overcome ethical and practical issues of human embryonic or fetal-derived tissues in clinical applications, the tumorigenicity of iPSC-derived populations remains an obstacle to their safe use in regenerative medicine. We herein established a novel treatment strategy for TBI using iPSCs expressing the enzyme-prodrug gene yeast cytosine deaminase-uracil phosphoribosyl transferase (yCD-UPRT). NS/PCs derived from human iPSCs displayed stable and high transgene expression of yCD-UPRT following CRISPR/Cas9-mediated genome editing. In vivo bioluminescent imaging and histopathological analysis demonstrated that NS/PCs concentrated around the damaged cortex of the TBI mouse model. During the subacute phase, performances in both beam walking test and accelerating rotarod test were significantly improved in the treatment group transplanted with genome-edited iPSC-derived NS/PCs compared with the control group. The injury area visualized by extravasation of Evans blue was smaller in the treatment group compared with the control group, suggesting the prevention of secondary brain injury. During the chronic phase, cerebral atrophy and ventricle enlargement were significantly less evident in the treatment group. Furthermore, after 5-fluorocytosine (5-FC) administration, 5-fluorouracil converted from 5-FC selectively eliminated undifferentiated NS/PCs while preserving the adjacent neuronal structures. NS/PCs expressing yCD-UPRT can be applied for safe regenerative medicine without the concern for tumorigenesis.

  • The original strain of SARS-CoV-2, the Delta variant, and the Omicron variant infect microglia efficiently, in contrast to their inability to infect neurons: Analysis using 2D and 3D cultures

    Kase Y., Sonn I., Goto M., Murakami R., Sato T., Okano H.

    Experimental Neurology (Experimental Neurology)  363   114379 - 114379 2023年03月

    研究論文(学術雑誌), 筆頭著者,  ISSN  00144886

     概要を見る

    COVID-19 causes neurological damage, systemic inflammation, and immune cell abnormalities. COVID-19-induced neurological impairment may be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which directly infects cells of the central nervous system (CNS) and exerts toxic effects. Furthermore, SARS-CoV-2 mutations occur constantly, and it is not well understood how the infectivity of the virus to cells of the CNS changes as the virus mutates. Few studies have examined whether the infectivity of cells of CNS - neural stem/progenitor cells (NS/PCs), neurons, astrocytes, and microglia - varies among SARS-CoV-2 mutant strains. In this study, therefore, we investigated whether SARS-CoV-2 mutations increase infectivity to CNS cells, including microglia. Since it was essential to demonstrate the infectivity of the virus to CNS cells in vitro using human cells, we generated cortical neurons, astrocytes, and microglia from human induced pluripotent stem cells (hiPSCs). We added pseudotyped lentiviruses of SARS-CoV-2 to each type of cells, and then we examined their infectivity. We prepared three pseudotyped lentiviruses expressing the S protein of the original strain (the first SARS-CoV-2 discovered in the world), the Delta variant, and the Omicron variant on their envelopes and analyzed differences of their ability to infect CNS cells. We also generated brain organoids and investigated the infectivity of each virus. The viruses did not infect cortical neurons, astrocytes, or NS/PCs, but microglia were infected by the original, Delta, and Omicron pseudotyped viruses. In addition, DPP4 and CD147, potential core receptors of SARS-CoV-2, were highly expressed in the infected microglia, while DPP4 expression was deficient in cortical neurons, astrocytes, and NS/PCs. Our results suggest that DPP4, which is also a receptor for Middle East respiratory syndrome-coronavirus (MERS-CoV), may play an essential role in the CNS. Our study is applicable to the validation of the infectivity of viruses that cause various infectious diseases in CNS cells, which are difficult to sample from humans.

全件表示 >>

総説・解説等 【 表示 / 非表示

  • 【神経の再生-臨床に届く基礎研究】外傷性脳損傷の再生治療の現状と軸索再生メカニズム

    加瀬 義高

    細胞 ((株)ニュー・サイエンス社)  55 ( 10 ) 766 - 769 2023年09月

    ISSN  1346-7557

     概要を見る

    外傷性脳損傷により欠損した脳組織は,そのままでは完全に自然回復することはなく,麻痺や高次脳機能障害などが残存してしまう。現在まで,そのように失った脳機能を回復するような再生医療の実現には至っていない。ここでは,外傷性脳損傷の基礎研究の現状と,損傷に対する再生医療の実現をはばむ障壁・問題について概説し,筆者らが発見した神経軸索を伸長する化合物の紹介と,今後の展望について論じる。(著者抄録)

  • SAH/Spasmの基礎研究 くも膜下出血による炎症反応は局所にとどまらず大脳皮質全体に及んで神経細胞死を引き起こす

    山田 浩貴, 加瀬 義高, 高橋 里史, 戸田 正博

    くも膜下出血と脳血管攣縮 (SAH)  38   66 - 66 2023年07月

    ISSN  2759-2405

  • COVID-19関連中枢神経障害に対する治療薬の開発研究

    加瀬 義高

    先進医薬研究振興財団研究成果報告集 ((公財)先進医薬研究振興財団)  2022年度   58 - 63 2023年03月

    ISSN  2189-1303

  • ヒトのニューロンにおける神経突起伸長メカニズムの解析

    神経化学 Vol. 61 (No. 2), 2022, 96–100 2022年12月

    記事・総説・解説・論説等(学術雑誌), 単著, 筆頭著者

  • 成体神経新生におけるp38 MAPKシグナルの役割

    月刊 臨床神経科学 (中外医学社)  40 ( 9 )  2022年09月

    記事・総説・解説・論説等(学術雑誌), 筆頭著者

全件表示 >>

研究発表 【 表示 / 非表示

  • 神経再生医学の最前線 ー細胞移動・軸索伸展から機能回復までー 神経突起伸展の分子機構と脊髄損傷および 外傷性脳損傷の再生医療への応用

    第22回 日本再生医療学会総会 (京都) , 

    2023年03月

    シンポジウム・ワークショップ パネル(指名)

  • The GADD45G/p38 MAPK/CDC25B signaling pathway enhances neurite outgrowth by promoting microtubule polymerization

    第43回日本炎症・再生医学会, 

    2022年07月

    口頭発表(一般)

  • ウイルス毒性増悪因子としてのCCN family member 1 の COVID-19 関連神経障害への関与

    加瀬義高

    第12回 日本CCNファミリー研究会, 

    2021年09月

    シンポジウム・ワークショップ パネル(指名)

  • EXPRESSION OF ACE2 AND A VIRAL VIRULENCE-REGULATING FACTOR CCN FAMILY MEMBER 1 IN HUMAN IPSC-DERIVED NEURAL CELLS: IMPLICATIONS FOR COVID-19-RELATED CNS DISORDERS

    ISSCR 2021 Annual Meeting, to be held virtually from 21 June - 26 June, 2021., 

    2021年07月

  • Expression of ACE2 and a viral virulence-regulating factor CCN family member 1: implications for COVID-19-related CNS disorders

    第42回日本炎症・再生医学会, 

    2021年07月

    口頭発表(一般)

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 神経幹細胞移植と神経突起伸長促進化合物を組み合わせた外傷性脳損傷の再生治療研究

    2022年04月
    -
    2024年03月

    科学研究費助成事業, 加瀬 義高, 若手研究, 未設定

  • 障害海馬での神経幹細胞の枯渇を招かない長期的な神経再生の基礎的研究

    2019年04月
    -
    2022年03月

    慶應義塾大学, 加瀬義高, 若手研究, その他,  研究代表者

     研究概要を見る

    近年報告されている脳内栄養因子等を用いた脳梗塞又はアルツハイマー病モデルマウス治療に関する研究においては、一時的な神経新生は認められるが、それらを用いることにより存神経幹細胞の枯渇を招く恐れがあり、治療後長期にわたってどのような弊害が出てくるのかわかっていない。本研究では、脳梗塞モデルマウス、認知症モデルマウスにおける障害海馬において残存神経幹細胞の枯渇を招かずに中長期的に神経回復を試みている。

知的財産権等 【 表示 / 非表示

  • 神経突起伸長促進用キット及びその使用

    出願日: 2021-089367   

    特許権, 単独

  • 脊髄損傷治療用ニューロスフェア誘導剤及びその使用

    出願日: 2019-215161   

    公表日: 2021-084882   

    特許権, 単独

受賞 【 表示 / 非表示

  • ふじた産学連携特別賞

    2023年10月

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 藤田医科大学医学会優秀演題賞

    2023年10月

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 奨励賞 (The Award for Young Investigator of Japanese Society for Neurochemistry)

    2022年07月, 日本神経化学会

    受賞区分: 国内外の国際的学術賞

  • 優秀発表賞

    2021年10月, 第64回日本神経化学会大会, ヒトのニューロンにおける神経突起伸長メカニズムの解明と神経突起伸長化合物の探索

    受賞区分: 国内学会・会議・シンポジウム等の賞

  • 優秀演題賞

    加瀬義高, 2020年07月, 第41回日本炎症・再生医学会, γ-secretase inhibitors enhance the neurite growth via modulation of p38 MAPK activation

    受賞区分: 国内学会・会議・シンポジウム等の賞

全件表示 >>

 

担当経験のある授業科目 【 表示 / 非表示

  • 老年医学 (生活習慣病)

    東京都立大学

    2020年04月
    -
    2022年03月

    学部専門科目, 講義, 兼任

  • 老年医学 高齢者の臨床(認知症とその対応)

    東京都立大学

    2018年04月
    -
    2019年03月

    春学期, 講義, 兼任

  • PBLチュートリアル教育

    東京大学

    2018年04月
    -
    2019年03月

    学部専門科目, 演習, 兼任

教育活動及び特記事項 【 表示 / 非表示

  • グローバルサイエンスキャンパス - 科学技術振興機構

    2016年04月
    -
    継続中

    , その他特記事項

     内容を見る

    グローバルサイエンスキャンパス(科学技術振興機構)受講生研究指導

 

所属学協会 【 表示 / 非表示

  • 日本脳卒中学会, 

    2021年11月
    -
    継続中
  • 日本炎症・再生医学会, 

    2019年03月
    -
    継続中
  • 日本神経化学会, 

    2019年03月
    -
    継続中
  • 日本再生医療学会, 

    2017年01月
    -
    継続中
  • 日本老年医学会, 

    2013年10月
    -
    継続中

委員歴 【 表示 / 非表示

  • 2024年03月
    -
    継続中

    第68回日本神経化学会大会 プログラム委員会

  • 2023年04月
    -
    継続中

    日本再生医療学会 国際スピーカーシリーズ運営委員

  • 2022年07月
    -
    継続中

    Editorial Board Member , Inflammation and Regeneration

  • 2022年07月
    -
    継続中

    評議員, 日本炎症・再生医学会

  • 2022年07月
    -
    2023年07月

    第44回日本炎症・再生医学会 プログラム委員, 日本炎症・再生医学会

全件表示 >>