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Abstract: KF-SLAM(Kalman filter-SLAM) have been used as a popular solution by researchers in many SLAM ap-
plication. Nevertheless, it shortcomings of assumption for Gaussian noise limited its efficiency and demand researcher
to consider better filter and algorithm to achieve a promising result of estimation. In this paper, we proposed one of its
family, the H∞ filter-based SLAM to determine its competency for SLAM problem. Unlike Kalman filter, H∞ filter able
to work in an unknown statistical noise behavior and thus more robust. It rely on a guess that the noise is in bounded
energy and does not require a priori knowledge about the system. Therefore, we proposed the H∞ filter as other available
technique to infer the location for both robot and landmarks while simultaneously building the map. From the results of
simulation, H∞ filter produces better outcome than the Kalman filter especially in the linear case estimation. As a result,
H∞ filter may provides another available estimation methods with the capability to ensure and improve estimation for the
robotic mapping problem especially in SLAM.
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1. INTRODUCTION

SLAM illustrates an application of mobile robot mov-
ing through and unknown environment, doing the ob-
servation of its surrounding and simultaneously creat-
ing a map that it believes from its measurement. A se-
ries of influential seminal papers introduced in 1990’s
such as Smith and Cheeseman et.al[1] gave an impact to
the robotic mapping and finally evolve its name to Si-
multaneous Localization and Mapping problem(SLAM)
and also known as Concurrent Mapping and Localiza-
tion(CML)[2]. See fig.1 for the illustration of SLAM.
Between 3 main techniques in SLAM; The Model-based,

Fig. 1 Illustration for SLAM problem

Behavioural-based and Probabilistic-based SLAM, prob-
abilistic approach has made a significant success as it
made less burden than the Model-based approach; which
require to build a precise model, or the Behavioral ap-
proach; a method of exploiting the sensors application to
the system. In spite of probabilistic approach remarkable
achievement, there exist shortcomings such as computa-
tional complexity. Nevertheless, with modern develop-
ment of software, a considerable support and solution to
this problem may exist, consequently inspire the devel-
opment of SLAM problem. Kalman filter[3] is one of the

most applied algorithm for SLAM. Thanks to its advan-
tages, the application of SLAM has been spread widely
whether in outdoor and indoor, outer space, underwater
exploration and mining. It also been expanding to 2D and
3D application[4][5][6]. It is expected that the future of
SLAMwill be likely boosting to home-based application.
To realize such expectation, researchers work out in var-
ious type of filter, parametric or non-parametric filter to
analyze and understand their characteristics and perfor-
mance. One of the non-parametric filter known as Fast-
SLAM seems to be a convincing available filter among
the others to raise the accuracy of estimation. Nonethe-
less, the attempt of applying this method still encounter
some of the common problem in SLAM such as the algo-
rithm complexity and cost of computation. Due to these
circumstances, Kalman filter still dominating the research
of SLAM. To overcome to the weak assumption of Gaus-
sian noise in Kalman filter, in this paper, we develop H∞
filter-based SLAM which is more robust. H∞ filter de-
pend on an assumption that the noises are bounded in
certain energy level and does not require a priori knowl-
edge of the system. These criteria should gives a merit
to H∞ filter for SLAM application. Until now, based on
our reading, the H∞ filter is not been applied yet in any of
SLAM application. Hence, this paper will be analyzing
the performance of H∞ filter-based SLAM. The analysis
is done under assumption that the robot is stationary and
observing its surrounding landmarks. The landmarks also
defined as stationary point landmarks and assumed to be
in a planar world. Further than that, as Kalman filter and
H∞ filter are in the same family, we would like to deter-
mine its convergence properties and its behavior towards
SLAM to demonstrate each capability and performance
between these two filters.
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2. SLAM ALGORITHM

Practically in robotics localization and mapping prob-
lem, noise are often Non-Gaussian with unknown statis-
tical behavior. One of the Gaussian filters, the celebrated
Kalman filter(H2 filter) inherently become incompetent
owing to this fact with the attention to realize the truly
autonomous robot behavior such as the Robotic Mapping
and localization problem. Due to this disadvantages, H∞
filter which is also known as minimax filter is proposed in
this paper to estimate robot and landmarks location. Hav-
ing almost the same characteristics as of Kalman filter,
H∞ filter only depend on assumption for a finite uncer-
tainty. These subsequently may provides another avail-
able estimation methods with the capability to ensure and
improve estimation for the robotic mapping problem es-
pecially in SLAM. Throughout this paper, we examine
the Kalman filter and H∞ filter performance in linear case
SLAM. We investigate the results using a constant mo-
tion and sensors uncertainties with perfect data associa-
tion. To this extent, H∞ filter is still not being applied
in the SLAM, although it have a desirable properties and
competitive compare to that of Kalman filter.

2.1 SLAM Preliminary Model
For the SLAM process model, we have the follow-

ing[3].

xvk+1 = Fvk xvk +uvk+1 + vvk+1 , (1)

where Fvk is the state transition matrix, xvk , is the ve-
hicle state, uvk a vector of control inputs, and vvk a vector
of temporally uncorrelated process noise errors with zero
mean and covariance, Qvk . The location of the i

th land-
mark is denoted as pi. For the stationary landmarks p,
and for i = 1 . . .N landmarks,

pik+1 = pik = pi (2)

On behalf of the measurement process, for an obser-
vation at ith landmark/feature,

zk = Hkxk +wk (3)

= Hpi pi−Hvk x(vk) +wk (4)

where wk is a vector of temporally uncorrelated obser-
vation errors with zero mean and variance Rk. Hk is the
observation matrix and represent the output of the sensor
zk to the state vector xk when observing the ith landmark.

3. H∞ FILTER CONVERGENCE
PROPERTIES

3.1 H∞ filter-Based SLAM
The papers in [7][8] presents a satisfactory explanation

of the H∞ filtering. Referring to those, we first make an
assumption for the noise characteristics same to Kalman
filter approach which is zero mean gaussian noise.

Assumption 1: R
Δ= DDT > 0

The above assumption is included to explain that the mea-
surements are correlated with noises. We also make an
assumption that the noise is in bounded energy which also
a characteristics of H∞ filter. This is one of the difference
between H∞ filter and Kalman filter.
Assumption 2: Bounded noise energy; ∑N

t=0 �wk�2 <
∞,∑N

t=0 �vk�2 < ∞
Σ0 > 0, Qk > 0, and Rk > 0 are the weighting matrices

for state xk, noise wk, and vk respectively.
We analyzed the differences between these two filters

and found the followings. For Kalman filter, the equation
is shown as follow.

Kk = Pk(I+HT
k R

−1
k HkPk)−1 (5)

Pk+1 = FkPk(I+HT
k R

−1
k HkPk)−1FT

k +Qk (6)

whereas H∞ filter, the equation for its gain and covari-
ance are given by;

Kk = Pk(I− γ−2Pk +HT
k R

−1
k HkPk)−1 (7)

Pk+1 = FkPk(I− γ−2Pk +HT
k R

−1
k HkPk)−1FT

k

+Qk (8)

From these equations, the dissimilarity between both
filter can be explicitly obtained. Furthermore, one should
notice that H∞ filter depends on the covariance matrix of
errors signals, Qk,Rk and L which are chosen and de-
signed to achieve desired performance and all of these
parameters must be bigger than zero. Besides that, if γ
values becomes bigger, this equation will be the same as
of Kalman filter equations.

3.2 Preliminary Results
We begin the convergence analysis of H∞ filter by

defining some assumption as stated below.
Assumption 3: rank Fk=n, for all k = 0,1, . . . ,N.

Consider that assumption(3) is fulfilled. Then the solu-
tion of an H∞ filtering problem will be as following [7],

Pk+1 = FkPkψ−1
k Fk +GQkG

T , P0 = Σ0 (9)

ψk = In +(HT
k R

−1
k Hk− γ−2LTL)Pk (10)

which holds a positive definite solution if it satisfies an
equation below.

P̂−1
k − γ−2LTL > 0, t = 0,1, . . . ,N, (11)

where

P̂k = (P−1
k −HT

k R
−1
k Hk) > 0 (12)

For γ > 0, the suboptimal H∞ filter is given by below
equations.

ẑ∗k = Lx̂k|k, x̂k+1|k = Fkx̂k|k (13)

x̂k|k = x̂k|k−1 +Kk[yk−Hkx̂k|k−1], x̂0|−1 = x̄0 (14)

Kk = PkHk(HkPkH
T
k +Rk)−1 (15)

Assumption 4: (F,H) is observable and (F,G) is con-
trollable.
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Theorem 1: Assume that Assumptions 1∼3 are
satisfied. The map uncertainties will be gradually de-
creasing as the observations are frequently made by a sta-
tionary robot.
Proof: The proof is analogous to [3]. The main dif-

ference is the γ effect on the proof. We begin the proof
by defining the initial state covariance matrix, P0 > 0 as
a positive semidefinite(psd). If the process noise, Qk and
measurement noise, Rk are both psd, for γ > 0, F,L are all
psd, therefore, Pk,ψk are also psd. In SLAM, we are inter-
ested in finding the estimate location of the robot and the
landmarks, therefore, L will be an identity matrix. The
Riccati equation for the map covariance matrix and for
all landmarks observed, can be defined as

detPk+1 = det[FPk(I+(HTR−1
k H− γ−2LT L)Pk)F

+GQkG
T ]

≤ detPk (16)

The rest of the proof is similar to [3] except the differ-
ences of the state covariance matrix and the observation
matrices which used for the rest of the proof. We also
found that for a case of the observation noise, R >> γ ,
the covariance matrix will not be a positive definite ma-
trix and therefore overshoot the estimation. Other than
that, the whole covariance matrix remain unchanged and
stable.
Uncertainties are generally relies on the results of the co-
variance matrix, P. [3] showed convergence properties
of Kalman filter-Based SLAM and then analyzed the sys-
tem behavior based on the Jacobian matrix as an nonlin-
ear version of Kalman filter [9]. For H∞ filter in linear
case, the convergence properties of a stationary robot ob-
serving landmarks are still unknown.

Theorem 2: For a stationary robot observing a sta-
tionary landmark m, with γ > 0, as more n-times(n > 0)
observation are made, in the limit, the whole covariance
matrix will be converging to

P∞
m =

�
0 0
0 0

�
(17)

Proof: Again we consider a 2D robot with initial co-
variance matrix P0, given by the following,

P0 =
�

σ2
v σvm

σmv σ2
m

�
(18)

Assume that, the robot are observing one landmark m.
From (13), when the robot is observing m landmarks n
times, and for R = σ2

r , we will obtain the following.

ψ = I+n(HTR−1H− γ−2LT L)P

= I+
�
(nσ−2

r )− (nγ−2) (nσ−2
r )

(nσ−2
r ) (nσ−2

r )− (nγ−2)

�

�
σ2
v σvm

σmv σ2
m

�

=
�

ρ11 ρ12
ρ21 ρ22

�
(19)

where

ρ11 = I+[(nσ−2
r )− (nγ−2)]σ2

v

ρ12 = (nσ−2
r )σ2

m

ρ21 = σ2
m(nσ−2

r )σ2
v

ρ22 = I+[(nσ−2
r )− (nγ−2)]σ2

m

Finding the inverse matrix of (29) using the Matrix In-
version Lemma, yields

ψ−1 =
�

ψ11 ψ12

ψ21 ψ22

�
(20)

where

ψ11 = [1+n(σ−2σ2
v )− 1

n2
σ−2
m σ2

r +

1
n
(1− γ−2σ−2

r )−1σ−2
r σ2

v ]−1

ψ12 = [1+n(σ−2σ2
m)− 1

n2
σ−2
m σ2

r +

1
n
(1− γ−2σ−2

r )−1σ−2
r σ2

v ]−1σ−2
r σ2

m

[n−1 +(σ−2σ2
v − γ−2σ2

v )]−1

ψ21 = [n−1 +(σ−2σ2
v − γ−2σ2

v )]−1σ−2
r σ2

v ×
[1+n(σ−2σ2

v )− 1
n2

σ−2
m σ2

r

+
1
n
(1− γ−2σ−2

r )−1σ−2
r σ2

v ]−1

ψ22 = [1+n(σ−2σ2
v − γ−2σ2

v )]−1 +[n−1+

(σ−2σ2
v − γ−2σ2

v )]−1×
[1+n(σ−2σ2

v )− 1
n2

σ−2
m σ2

r

+
1
n
(1− γ−2σ−2

r )−1σ−2
r σ2

v ]−1×
σ−2
r σ2

m[n−1 +(σ−2σ2
v − γ−2σ2

v )]−1

From above equation, it can be notice that for a case of
the observation noise if the designer must be carefully de-
sign the system where for an example of R>> γ , it cause
it to be faulty estimation. The designer must choose an
appropriate value to satisfy this condition with consider-
ing the theoretical explanation of H∞ filter. Furthermore,
as n→ ∞,

ψ−1
∞ =

�
0 0
0 0

�
(21)

Substituting this result into (12), finally we obtain that

P∞
m = FPψ−1

∞ F

=
�
0 0
0 0

�

Corollary 1: For a stationary robot which is observing
one landmark, in the limit, the map covariance matrix will
be decreasing as follows

P∞
m = σ2

m (22)

In the limit, the map covariance will be as the following.

P∞
m = 0 (23)
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Above results showed better results than obtained by
[3]. It is understood that in the limit, the whole covariance
matrix is decreasing. Although above result encourages
good estimation for the robot and landmark positions, the
true landmark location is still unknown[9]. Similar to
Kalman filter, if bigger magnitude of noises applied to
the filter, the oscillation will become slightly bigger and
it consequently effects the overall estimation.
We further observed the convergence properties when

the non-moving robot was observing two stationary land-
marks.

Theorem 3: For a stationary robot observing two
stationary landmarks, m and m̄ with γ > 0, as more n(n>
0) times observation are made, in the limit, the whole
covariance matrix will converge to the following,

P∞
m =

⎡
⎣
0 0 0
0 0 0
0 0 0

⎤
⎦ (24)

Proof: The proof is similar to Theorem 2 proof.
Therefore, it is omitted here.
Corollary 2: For a stationary robot observing two

landmarks, in the limit, the map covariance matrix remain
unchanged as follows;

P∞
m =

�
σ2
m σmσm̄

σm̄σm σ2
m̄

�
(25)

In the limit, the map covariance will be as the following.

P∞
m =

�
0 0
0 0

�
(26)

Proof: It is clear from (35) that the map covariance
matrix will be shown as in (37).
It should be aware that, the map covariance for land-

mark 1 and landmark 2 will be different and varied to
each other especially whenever the initial covariance ma-
trix is not equal to zero and if and only if the uncertainties
differ from each other. The process noise and measure-
ment noise must be non-zero to admit these results. As
conclusion, the uncertainties of those two landmarks will
be differ from each other and thus prove of its depen-
dency to the initial covariance.

4. SIMULATION RESULTS

We demonstrates the simulation results for the above
convergence properties for a case of a stationary robot
observing two stationary landmarks in an environment of
unknown noise but bounded. We show the performance
results for a linear case SLAM, in a constant motion and
perfect data association as been stated early on this paper.
The result ofH∞ filter is being compare to the Kalman fil-
ter and H∞ filter. In the simulation setting, we determine
the robot to be located at world coordinate (1,1) while
the two landmarks are located with reference to the world
coordinate at (7,7) and (−1,8) respectively(see Fig.2).
In order to simplify the analysis, we state the following

assumptions.
Assumption 5: Robot is in a planar world.

Fig. 2 The global coordinate system representing the lo-
cation for robot and 2 landmarks to be estimate

Assumption 6: Process error and noise error are small
such that both Kalman filter and H∞ filter are applicable.
Assumption 7: The relative distance between land-

marks and robot can be measured.
Assumption 8: Landmarks are assumed to be station-

ary and consist of point landmarks.
A selection of control parameters for simulation are

shown in Table 1. The value of observation noise is set
to be less than the γ value as obtained by Theorem 2 and
Theorem 3. The location of robot and landmarks are re-
ferring to the global coordinate systems.

[htb]

Table 1 SIMULATION PARAMETERS

Process noise, Q 0.0000009
Observation noise,R 0.01

γ 0.9
Robot position [1,1]

Landmark 1 location [7,7]
Landmark 2 location [-1,8]
Initial covariance Pvv = 0.0000001, Pmm = 10

4.1 Stationary robot observing two landmarks
To evaluate H∞ filter performance, the robot is defined

to be more confidence about its location with small uncer-
tainties. We manage the simulation longer about 10000s
to determine the stability and consistency between these
filters and shows the filter eligibility towards SLAM.
A rate of γ = 0.9 have been achieved to obtain the best

estimation of H∞ filter. Estimation for the robot location
estimation are shown in Figs.3-4 between Kalman filter
and H∞ filter. It is seems that both filter gives their best
estimates for each x and y position with a slight differ-
ence value. Even though the estimation result both shows
similar result, indeed this proves the ability of H∞ filter
in SLAM problem. In addition, the sequel of H∞ filter
promising results continues on the landmarks estimation
in Figs.5-6. These figures shown the estimation for both
filters on both landmarks. In these figures especially from
fig.7, the fast convergence of H∞ filter is achieved. This
is where we believe the distinction between H∞ filter and
Kalman filter. Although it produces very similar result,
H∞ filter improved better convergence. The estimation
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Fig. 3 Robot position estimation between Kalman filter
and H∞ filter
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Fig. 4 Convergence comparison between filters

for the landmarks also converging to the true value as it
believes. Furthermore, the results also consistent with the
result of EKF-based SLAM which also converging to ze-
ros[9]. Even though, it can be see that not much improve-
ment been made by H∞ filter in the simulation results, the
experimental evaluations may encourage better estima-
tion than Kalman filter and presented in later section.
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Fig. 5 Landmarks estimation: Kalman filter and H∞ filter
comparison

Conversely, for bigger measurement noise, the estima-
tion of H∞ filter is diverging and suddenly effecting the
competency of H∞ filter towards estimation. This is the
case if the other parameters are remain untouched. See
Fig.7 for the effect of bigger observation noise e.g ob-
servation noise, R = 10. It concludes that, proper design
must be carried when adopting H∞ filter in SLAM to en-
sure such bad inference can be avoid. Besides, as stated
previously, a bigger value of γ will result the approxima-
tion to be identical to Kalman filter estimation.
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Fig. 6 Landmarks estimation: Kalman filter and H∞ filter
comparison
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Fig. 7 The landmarks estimation:Effect of bigger mea-
surement noise with unchanged γ

5. EXPERIMENTAL RESULTS

To gain confidence about H∞ filter, we run an exper-
imental evaluation to understand its behavior in real ap-
plication. We made the same assumptions for the experi-
ment to ensure that the characteristics and consistency are
inherent as shown in the convergence theorems and simu-
lation outcomes. H∞ filter should perform when γ = 0.65
and lead to a competent result than Kalman filter. In the
experiment, two landmarks are defined at two position
with reference to the robot coordinate system at (50,0)
and (60,0) in millimeters(mm) respectively. See Fig.8
for experimental setup.

Fig. 8 Stationary Epuck observing landmarks

From Fig.9, Fig.10, and Fig.11, we identify that the
H∞ filter converges faster than Kalman filter. This is con-
siderable result which shows the competency using H∞
filter. Above mentioned results shows for a case where
a robot with minor measurement sensors error or less-
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Fig. 10 Landmark 1 Estimation

noisy environment. In contrast, where the when the other
parameters are unchanged, but with bigger measurement
noise, the H∞ filter performance is violated and incapable
to achieve better results than Kalman filter(Figs.12−13).
Due to this undesirable design, the estimation are faulty
and inherently causing undesirable estimation results of
robot localization and landmarks estimation. Based on
these result, it is indeed shows consistency with the re-
sults obtained in [3] with a slight improvement from H∞
filter. Belong to this results of fast convergence, process
time for SLAM may reduce significantly and definitely
nurture the SLAM problem. These results inspire further
achievement and development of H∞ filter.

6. CONCLUSIONS

H∞ filter is still new to SLAM and need further analy-
sis and development to achieve better motivating results.
Moreover, H∞ filter is capable to approximate linear and
non-linear system that has wide coverage and variety of
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Fig. 11 Estimation of landmark 2
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Fig. 12 The landmarks estimation:Effect of R >> γ
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Fig. 13 MSE for the landmarks estimation:Effect of
R >> γ

noise which are useful for SLAM problem. These re-
sults thus consistent with the fundamental lies in H∞ fil-
ter where the designer should consider appropriate level
of weighting noise of Q, and R to achieve certain level of
performance.
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