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Abstract— This paper considers the bilateral teleoperation of

wheeled mobile robot with time delay using the virtual image
robot. In this paper, we introduce the virtual image robot as

a master robot. The human operator commands the virtual
image robot, the slave wheeled mobile robot tracks the motion

of the virtual image robot. The kinematics and dynamics of
master/slave robots is considered. The scattering theory and

passivity based control schemes for bilateral teleoperation is
applied, the control law is proposed. In the simulation, the

performance of the proposed bilateral teleoperation system is
verified using wheeled mobile robots.

I. INTRODUCTION

Teleoperation consists of a dual robot system called a

master robot and a slave robot. For the command of the

human operator, the slave robot situated at a remote location

tracks the motion of the master robot. In order to improve the

task performance, the force feedback from the slave robot to

the master robot is needed. In this way, the teleoperation is

said to be controlled bilaterally [1].

The master and slave robots are connected to the network

in the bilateral teleoperation. The time delay can be imposed

in transmission of the data between the master and the slave

site. It is known that the time delay in the closed loop

system destabilize the stable system. In previous researches,

scattering theory and passivity-based control are used to

guarantee the stability in case the time delay exists [2], [3],

[4], [5].

In previous researches, the teleoperation of a wheeled

mobile robot is considered [6]. The human operator control

the slave mobile robot by operating a master haptic joystick.

The passivity based control of bilateral teleoperation [7] is

applied, the stability is guaranteed. Instead of using the scat-

tering theory, Lyapunov-Krasovskii functional for delayed

system is proposed.

In this paper, the bilateral teleoperation of the slave

wheeled mobile robot with time delay is considered. The

proposed bilateral teleoperation system has the virtual image

robot as the master robot. It is convenient for the human

operator to look the virtual image robot compared to us-

ing only the haptic joystick. It needs that the stability is

guaranteed between the virtual image robot and the wheeled
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mobile robot situated at a remote location. This paper utilizes

the scattering theory and passivity based control schemes

of the teleoperation, where the scattering transformation

proposed in previous research [2] is applied. However, the

differences between [2] and this paper are shown as follows.

The dimension of the state vector is multidimensional. This

paper considers not only the dynamics but also kinematics.

This paper proposes the control law. It is shown that the

stability of the bilateral teleoperation systems is guaranteed

by using Lyapunov function. Though the kinematics includes

nonlinear equations, design parameters of the proposed con-

troller are obtained from the constant matrix inequality. In

the simulation, the performance of the proposed bilateral

teleoperation system is verified using wheeled mobile robots.

The organization of this paper is as follows. The modeling

and problem formulation is shown Section 2. In Section

3, the stability of the bilateral teleoperation is presented.

In Section 4, simulation results are indicated. Finally, our

conclusions are presented.

II. MODELING AND PROBLEM FORMULATION

Consider the wheeled mobile robot shown in Fig. 1.

The coordinate of the wheeled mobile robot consists of the

position (xm,ym) and the rotation θm. The control inputs

are given by the velocity vm and steering angle θ̇m. The

kinematics model of the mobile robot is derived as follows

d

dt





xm

ym

θm



 =





cosθm 0

sinθm 0

0 1





[

vm

θ̇m

]

. (1)
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Fig. 1. Wheeled Mobile Robot

The velocity vm and steering angle θ̇m are related to the

angle velocities of the right and left wheels ωm1, ωm2

[

vm

θ̇m

]

=

[ rm
2

rm
2

rm
2bm

− rm
2bm

][

ωm1

ωm2

]

(2)
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where rm, bm is the radius of the wheels and the half-width

of the wheeled mobile robot, respectively.

From the equations (1), (2), the kinematics model of the

mobile robot is derived as follows

d

dt





xm

ym

θm



 =





rm
2

cosθm
rm
2

cosθm
rm
2

sinθm
rm
2

sinθm
rm

2bm
− rm

2bm





[

ωm1

ωm2

]

. (3)

The dynamics of the mobile robot is written as
[

Jm1 0

0 Jm2

][

ω̇m1

ω̇m2

]

+

[

cm1 0

0 cm2

][

ωm1

ωm2

]

=

[

τm1

τm2

]

(4)

where Jm1, Jm2 are the right and left moment of inertia, cm1,

cm2 are the right and left viscous friction, τm1, τm2 is the

right and left torque, respectively.

For the above equations (3), (4), we consider the tele-

operation of the slave wheeled mobile robot by using the

virtual image robot shown in Fig. 2. The operator gives the

torque of the virtual image robot by the joystick, the force

from environment is received through the joystick. As if the

operator take a ride in the virtual image robot, the operator

control the slave wheeled mobile robot. The control object

is that the slave wheeled mobile robot moves as the same as

the virtual image robot.

Operator Time delay

Network

Virtual image robot

Wheeled mobile robot

Fig. 2. Bilateral Teleoperation using Virtual Image Robot

III. STABILITY OF BILATERAL TELEOPERATION

The bilateral teleoperation system is shown in Fig. 3. The

bilateral teleoperation system is composed of the following

parts: the human operator, the master, the communication

block, the slave, the environment and the control parts. The

human operator commands the master with force Fh to move

it with angle velocity ωm. The position and the rotation of

the robot information qm is sent to the slave side. The local

controller Ff eed on the slave side drives the control input that

the position qs and the angle velocity ωs equal to the position

qm and the velocity ωm of the master. If the slave contacts a

remote environment, the force Fe affects the position and the

velocity of the slave. The local controller Fback on the master

side gives the control input which decrease the error of the

position and the angle velocity between the master and the

slave.

The master virtual image model is given as follows

q̇m = Sm(qm)ωm (5)

Jmω̇m + cmωm = τm (6)

τm = Fh +Fback −Fm (7)
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Fig. 3. Bilateral Teleoperation System

where qm, ωm, Sm(qm), Jm, cm, τm are defined

qm =





xm

ym

θm



 , ωm =

[

ωm1

ωm2

]

Sm(qm) =





rm
2

cosθm
rm
2

cosθm
rm
2

sinθm
rm
2

sinθm
rm

2bm
− rm

2bm





Jm =

[

Jm1 0

0 Jm2

]

, cm =

[

cm1 0

0 cm2

]

, τm =

[

τm1

τm2

]

.

In a similar way, the slave model is written as

q̇s = Ss(qs)ωs (8)

Jsω̇s + csωs = τs (9)

τs = Fs +Ff eed −Fe (10)

where qs, ωs, Ss(qs), Js, cs, τs are given

qs =





xs

ys

θs



 , ωs =

[

ωs1

ωs2

]

Ss(qs) =





rs

2
cosθs

rs

2
cosθs

rs
2

sinθs
rs
2

sinθs
rs

2bs
− rs

2bs





Js =

[

Js1 0

0 Js2

]

, cs =

[

cs1 0

0 cs2

]

, τs =

[

τs1

τs2

]

.

The scattering transformation is described as

um =
1√
2b

(Fm +bωm) , vm =
1√
2b

(Fm −bωm)

us =
1√
2b

(Fs +bωsd) , vs =
1√
2b

(Fs −bωsd) (11)

The slave side receives the information of the master T

[s] ago. The signal us(t) is equal to the signal um(t −T ).
Similarly, vm(t) = vs(t −T ).

The some assumptions are introduced, which is assumed

in [2].

• The human operator and the environment can be mod-

eled as passive systems.

• The operator and the environmental force are bounded

by known functions of the master and the slave veloci-

ties respectively.

• All signals belong to the L2e, the extended L2 space.

• The angle velocities ωm and ωs equal zero for t < 0.
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The local control law is proposed.

Fback = ST
mK(qs(t −T )−qm) (12)

Ff eed = ST
s K(qm(t −T )−qs) (13)

Fs = Bs2 (ωsd −ωs) (14)

K =





K1 0 0

0 K1 0

0 0 K2



 (15)

where K1 > 0, K2 > 0, K3 > 0. The following theorem is

proposed.

The position tracking error between the master and the

slave robot is defined as

es = qm(t −T )−qs(t) (16)

where qm(t −T ) is the delayed master position and rotation

received on the slave side.

Theorem 1: Consider the system described by (5)-(10)

and the control law (12)-(15). The design parameter K is

obtained from the following inequality

T 2(ST
s KSs)(S

T
mKSm) < cscm. (17)

The master and slave angle velocities asymptotically con-

verge to the origin, the position error (16) remains bounded.

Proof: Define a positive definite function for the system

as

V =
1

2
ω

T
m Jmωm +

1

2
ω

T
s Jsωs +

1

2
(qm −qs)

T K(qm −qs)

+
∫ t

0

(

ω
T
s Fe −ω

T
m Fh

)

dτ +
∫ t

0

(

ω
T
m Fm −ω

T
sdFs

)

dτ.

(18)

The human operator and remote environment are passive

∫ t

0
ω

T
s Fedτ ≥ 0, −

∫ t

0
ω

T
m Fhdτ ≥ 0. (19)

Using the scattering transformation (11), the communication

block is passive

∫ t

0

(

ω
T
m Fm −ω

T
sdFs

)

dτ =
1

2

∫ t

t−T

(

u2
m + v2

m

)

dτ ≥ 0. (20)

Thus, the function V is positive-definite. The derivative of

(18) along the trajectories of the system is given by

V̇ = ω
T
m Jmω̇m +ω

T
s Jsω̇s +(q̇m− q̇s)

T K(qm −qs)

+ω
T
s Fe −ω

T
m Fh +ω

T
m Fm −ω

T
sd Fs

= ω
T
m (−cmωm + τm)+ω

T
s (−csωs + τs)

+(Smωm −Ssωs)
T K(qm −qs)

+ω
T
s Fe −ω

T
m Fh +ω

T
m Fm −ω

T
sd Fs

= ω
T
m

[

−cmωm +Fh +ST
mK(qs(t −T )−qm)−Fm

]

+ω
T
s

[

−csωs +Fs +ST
s K(qm(t −T )−qs)−Fe

]

+(ωT
m ST

m −ω
T
s ST

s )K(qm −qs)

+ω
T
s Fe −ω

T
m Fh +ω

T
m Fm −ω

T
sd Fs

= −ω
T
m cmωm +ω

T
m Fh +ω

T
m ST

mKqs(t −T )

−ω
T
m ST

mKqm −ω
T
m Fm

−ω
T
s csωs +ω

T
s Fs +ω

T
s ST

s Kqm(t −T )

−ω
T
s ST

s Kqs −ω
T
s Fe

+ω
T
m ST

mKqm −ω
T
m ST

mKqs−ω
T
s ST

s Kqm +ω
T
s ST

s Kqs

+ω
T
s Fe −ω

T
m Fh +ω

T
m Fm −ω

T
sd Fs

= −ω
T
m cmωm −ω

T
s csωs +ω

T
s Fs −ω

T
sdFs

+ω
T
m ST

mK(qs(t −T )−qs)+ω
T
s ST

s K(qm(t −T )−qm)

−ω
T
m ST

mKqm +ω
T
m ST

mKqm−ω
T
s ST

s Kqs +ω
T
s ST

s Kqs

= −ω
T
m cmωm −ω

T
s csωs +ω

T
s Fs − (ωsd −ωs +ωs)

T Fs

+ω
T
m ST

mK(qs(t −T )−qs)+ω
T
s ST

s K(qm(t −T )−qm)

= −ω
T
m cmωm −ω

T
s csωs − (ωsd −ωs)

T Fs

+ω
T
m ST

mK(qs(t −T )−qs)+ω
T
s ST

s K(qm(t −T )−qm)

= −ω
T
m cmωm −ω

T
s csωs − (ωsd −ωs)

T Bs2 (ωsd −ωs)

+q̇T
mK(qs(t −T )−qs)+ q̇T

s K(qm(t −T )−qm) (21)

Using the following relation

qi(t −T )−qi = −
∫ T

0
q̇i(t − τ)dτ, i = m, s (22)

the equation (21) is transformed

V̇ = −ω
T
m cmωm −ω

T
s csωs − (ωsd −ωs)

T Bs2 (ωsd −ωs)

−(K
1
2 q̇m)T

∫ T

0
K

1
2 q̇s(t − τ)dτ

−(K
1
2 q̇s)

T
∫ T

0
K

1
2 q̇m(t − τ)dτ. (23)

Integrating the above the equation on the time interval [0, t f ]

∫ t f

0
V̇ dt = −cm‖ωm‖2

2 − cs‖ωs‖2
2 −Bs2‖ωsd −ωs‖2

2

−
∫ t f

0
(K

1
2 q̇m)T

∫ T

0
K

1
2 q̇s(t − τ)dτdt

−
∫ t f

0
(K

1
2 q̇s)

T

∫ T

0
K

1
2 q̇m(t − τ)dτdt (24)

where the notation ‖ · ‖2 represents the L2 norm of a signal

on the interval [0, t f ]. Using Schwartz inequality for any

α1 > 0, α2 > 0

2

∫ t f

0
(K

1
2 q̇m)T

∫ T

0
K

1
2 q̇s(t − τ)dτdt

≤ α1

∫ t f

0
q̇T

mKq̇mdt +
1

α1

∫ t f

0

∫ T

0
q̇s(t − τ)T Kq̇s(t − τ)dτdt

≤ α1

∥

∥

∥
K

1
2 q̇m

∥

∥

∥

2

2
+

T 2

α1

∥

∥

∥
K

1
2 q̇s

∥

∥

∥

2

2
. (25)

Similarly,

2

∫ t f

0
(K

1
2 q̇s)

T

∫ T

0
K

1
2 q̇m(t − τ)dτdt

≤ α2

∥

∥

∥
K

1
2 q̇s

∥

∥

∥

2

2
+

T 2

α2

∥

∥

∥
K

1
2 q̇m

∥

∥

∥

2

2
. (26)
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The equation (24) becomes as follows
∫ t f

0
V̇ dt ≤ −cm‖ωm‖2

2 − cs‖ωs‖2
2 −Bs2‖ωsd −ωs‖2

2

+
α1

2

∥

∥

∥
K

1
2 q̇m

∥

∥

∥

2

2
+

T 2

2α1

∥

∥

∥
K

1
2 q̇s

∥

∥

∥

2

2

+
α2

2

∥

∥

∥
K

1
2 q̇s

∥

∥

∥

2

2
+

T 2

2α2

∥

∥

∥
K

1
2 q̇m

∥

∥

∥

2

2

≤ −cm‖ωm‖2
2 − cs‖ωs‖2

2 −Bs2‖ωsd −ωs‖2
2

+
α1

2

∥

∥

∥
K

1
2 Smωm

∥

∥

∥

2

2
+

T 2

2α1

∥

∥

∥
K

1
2 Ssωs

∥

∥

∥

2

2

+
α2

2

∥

∥

∥
K

1
2 Ssωs

∥

∥

∥

2

2
+

T 2

2α2

∥

∥

∥
K

1
2 Smωm

∥

∥

∥

2

2

≤ −cm‖ωm‖2
2 − cs‖ωs‖2

2 −Bs2‖ωsd −ωs‖2
2

+

(

α1

2
ST

mKSm +
T 2

2α2
ST

mKSm

)

‖ωm‖2
2

+

(

α2

2
ST

s KSs +
T 2

2α1

ST
s KSs

)

‖ωs‖2
2 . (27)

If the following inequalities are satisfied
(

α1

2
+

T 2

2α2

)

ST
mKSm < cm (28)

(

α2

2
+

T 2

2α1

)

ST
s KSs < cs (29)

V̇ < 0 is derived. It can be shown that ST
mKSm is constant

matrix independent of θm.

ST
mKSm =

[ rm
2

cosθm
rm
2

sinθm
rm

2bm
rm
2

cosθm
rm
2

sinθm − rm
2bm

]





K1 0 0

0 K1 0

0 0 K2





×





rm
2

cosθm
rm
2

cosθm
rm
2

sinθm
rm
2

sinθm
rm

2bm
− rm

2bm





=







K1

(

rm
2

)2 (

cos2
θm + sin2

θm

)

+K2

(

rm
2bm

)2

K1

(

rm
2

)2 (

cos2
θm + sin2

θm

)

−K2

(

rm
2bm

)2

K1

(

rm
2

)2 (

cos2
θm + sin2

θm

)

−K2

(

rm
2bm

)2

K1

(

rm
2

)2 (

cos2
θm + sin2

θm

)

+K2

(

rm
2bm

)2







=







K1

(

rm
2

)2
+K2

(

rm
2bm

)2

K1

(

rm

2

)2 −K2

(

rm

2bm

)2

K1

(

rm
2

)2 −K2

(

rm
2bm

)2

K1

(

rm
2

)2
+K2

(

rm
2bm

)2






(30)

Similarly, ST
s KSs is also constant matrix.

We can solve the condition that the inequalities (28), (29)

have positive solutions α1, α2. From the inequality (28)

α1I < 2cm(ST
mKSm)−1 − T 2

α2

I (31)

and the inequality (29) becomes

1

α1

I <
2

T 2
cs(S

T
s KSs)

−1 − α2

T 2
I

α1I >

(

2

T 2
cs(S

T
s KSs)

−1 − α2

T 2
I

)−1

(32)

where symbol I means a unit matrix. Using the results (31),

(32)

(

2

T 2
cs(S

T
s KSs)

−1 − α2

T 2
I

)−1

< 2cm(ST
mKSm)−1 − T 2

α2
I

(33)

is satisfied. The following result is derived

α
2
2 I −2α2cs(S

T
s KSs)

−1 +T 2(ST
mKSm)c−1

m cs(S
T
s KSs)

−1
> 0.

(34)

Using the relation (cs(S
T
s KSs)

−1)T = cs(S
T
s KSs)

−1, the fol-

lowing matrix inequality is obtained.

T 2(ST
s KSs)(S

T
mKSm) < cscm. (35)

Thus, if the matrix K satisfies the inequality (35), then matrix

inequalities (28), (29) also are satisfied. From the derivative

of the Lyapunov function V̇ < 0, the signal ωm, ωs, qm −qs

are bounded. Using the same way as [2], the master/slave ac-

celeration and ω̇sd are bounded. The asymptotic convergence

of the angle velocities ωm, ωs are guaranteed. The position

tracking error (16) can be rewritten as

es = qm(t)−qs(t)−
∫ t

t−T
q̇m(τ)dτ. (36)

Thus, the position tracking error is bounded.

IV. SIMULATION

In this section, the performance of the bilateral teleopera-

tion proposed in section 3 is verified. The model parameters

are given as Jm1 = Jm2 = 1.5 [kgm2], Cm1 =Cm2 = 0.5 [Nms],
rm = 0.1 [m], bm = 0.3 [m], Js1 = Js2 = 1.5 [kgm2], Cs1 =
Cs2 = 0.5 [Nms], rs = 0.1 [m], bs = 0.3 [m]. The control

parameters of the Bs2 and K1, K2 are designed

Bs2 =

[

0.1 0

0 0.1

]

, K1 = 200, K2 = 20 (37)

and parameter of scattering transformation is b = 500. It is

assumed that the constant time delay T = 0.02 [s] exists. The

initial condition are given as follows

qm(0) = qs(0) =





0

0

0



 , ωm(0) = ωs(0) =

[

0

0

]

. (38)

Consider the control of the wheeled mobile robot shown

in Fig. 4. The operator steers the wheeled mobile robot

through the virtual image robot. First, we examine whether

the wheeled mobile robot moves along the virtual image

robot. Next, it is verified that the operator can feel the force

from the obstacle, when the wheeled mobile robot hits the

obstacle.
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Obstacle

x0

Wheeled mobile robot

Fig. 4. Simulation Setup

The simulation results are obtained by using MATLAB.

The simulation results show that the human operator gives

the force as Fh1 = 5 [Nm](t = 1 [s]−11 [s]), Fh2 = 4 [Nm](t =
1 [s]−11 [s]), the slave mobile robot contacts the environ-

ment Fe = 5 [Nm](t = 50 [s]− 55 [s]) (Fig. 5). Figs. 6-8

indicates the position and rotation of master virtual image

robot and slave wheeled mobile robot, where the solid line

and dashed line represents the master virtual image robot

and slave wheeled mobile robot, respectively. The trajectories

of xm − ym and ym − ys are shown in Fig. 9. It is indicated

that the error of the position and rotation qm(t −T )−qs(t)
is bounded. Figs. 10-11 shows the angle velocities ωm,

ωs asymptotically converge to zero. Fig. 12 indicates the

operator receives the force, when the wheeled mobile robot

gives the force Fe. From the input torque Ff eed shown in Fig.

13, the wheeled mobile robot moves along the virtual image

robot.
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Fig. 8. Time responses of θm and θs (solid: θm, dashed: θs)
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Fig. 10. Time responses of ωm1 and ωs1 (solid: ωm1 , dashed: ωs1)
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Fig. 11. Time responses of ωm2 and ωs2 (solid: ωm2 , dashed: ωs2)
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Fig. 12. Time responses of Fback1 and Fback2 (solid: Fback1 , dashed: Fback2 )
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Fig. 13. Time responses of Ff eed1 and Ff eed2 (solid: Ff eed1 , dashed: Ff eed2)

V. CONCLUSION

This paper considered the bilateral teleoperation of the

slave wheeled mobile robot with time delay using the master

virtual robot model. The virtual robot model as a master

robot was introduced. The human operator commands the

virtual robot, the wheeled mobile robot tracks the mo-

tion of the virtual robot. The kinematics and dynamics of

master/slave robots can be considered. The passivity based

control schemes for bilateral teleoperation was applied, the

control law was proposed. The matrix inequality to solve

design parameters was derived. It was shown that the master

and slave angle velocities asymptotically converge to the

origin, the position tracking error remains bounded. In the

simulation, the performance of the proposed bilateral teleop-

eration system was verified using wheeled mobile robots.
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