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Abstract— In this paper, we examine the H∞ filter-based
SLAM especially about its convergence properties. In contrast
to Kalman filter approach that considers gaussian noise with
zero mean, H∞ filter is more robust and may provide sufficient
solutions for SLAM in an environment with unknown statistical
behavior. Due to this advantage, H∞ filter is proposed in this
paper to efficiently estimate the robot and landmarks location
under worst case situations. H∞ filter requires the designer to
appropriately choose the noise’s covariance with respect to γ to
obtain a desired outcome. We show some of the conditions
to be satisfy in order to achieve better estimation results
than Kalman filter. From the experimental results, H∞ filter
is perform better than Kalman filter for a case of bigger robot
initial uncertainties. These subsequently may provide another
available estimation method with the capability to ensure and
improve estimation for the robotic mapping problem, especially
in SLAM.

I. INTRODUCTION

A. Robotic Mapping

Robotics localization and mapping problem is one the
area of autonomous robot application that recently gained
researcher’s attention thanks to its capability that able to
support fully autonomous robot behavior. The problem il-
lustrates a case where a mobile robot is put in an unknown
environment, then takes sufficient observations of its sur-
roundings. Next, from this information, robot then builds a
map from what it believes. Even though the development of
the robot localization and mapping problem has passed about
two decades, there are still a lot of difficulties to be solved.

Since 1990’s, researchers around the world become more
enthusiastic about this problem and a series of influen-
tial seminal papers by Smith and Cheeseman et.al [1],
has boosted up this research and consequently evolved
its name to Simultaneous Localization and Mapping
problem(SLAM)[2]. See Fig.1 for further explanation. As
stated by its name, SLAM consists of two general prob-
lems that are the robot localization and mapping. Robot
localization states a problem where we are given predefined
landmarks, the robot must try to estimate it location. In
the other hand, robot mapping determines a problem that
given a robot trajectory, a map must be build. Therefore,
SLAM more complicated and needs proper effort for the
solution. Nowadays, SLAM has been applied in a variety
of applications, indoor or outdoor such as satellite, mining,
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Fig. 1. Illustration for SLAM problem

space exploration, rescue, military, etc. The development
of SLAM continues whether in 2D [3] or 3D applications
[4][5] and amazingly expand even to home-based robot
application. This problem is tracked around 1980’s, and im-
proved from the form of Topological and Metric approach to
Behavioral approach, Mathematical-based model approach
and Probabilistic approach [2]. However, between these 3
techniques, the probabilistic approach made a significant
success than the mathematical models approach; which re-
quire building a precise model, or the behavior approach; a
method of exploiting the sensor’s behavior to the system. In
spite of remarkable achievement of probabilistic approach, it
has shortcomings of computational complexity. Nevertheless,
with modern software development, a considerable support
and solution to this problem may be available, consequently,
inspire the development of SLAM problem.

Recently, probabilistic approaches whether parametric or
non-parametric methods have been proposed to solve the
SLAM problems such as Kalman filter, Unscented Kalman
filter, Particle filter, etc. At this end, a non-parametric method
called Fast-SLAM approach [2], efficiently constructs the
unknown map by utilizing an amount of particle whose
behaves as the uncertainty. If more particles are used, the
estimation will be better, but in contrast they require a high
computational cost for the systems. Due to such deficiencies,
such a remarkable technique does not deter some classical
methods, for example, Kalman filter and other conventional
methods. Moreover, no matter what kind of filters presented
above, they are still familiar and fundamentally relied on
probabilistic theory. The readers are encouraged to read
about the development of SLAM in [6] which discussed the
SLAM problem from various aspects.



B. Probabilistic-based SLAM

Uncertainties and sensor noises are the most influential
keywords that brought the idea of probabilistic into SLAM
problem. Governed by the law of probabilistic, the estimation
is processed to a set of information than only relying on a
single guessed method. This eventually made probabilistic
method applicable to most SLAM problems in most situa-
tions with unknown noise characteristics. In view to realize
the truly autonomous robot’s characteristics, probabilistic
approach is one of the available approaches as it is able to
assign and feeds sufficient information for the robot to make
a judgement while they work or operate independently in a
less-human monitoring system.

In contrast to Kalman filter reputation among decades
within various fields, some applications still demands further
attention for development especially regarding its deficien-
cies of zero mean gaussian assumption. Therefore, it is a
wise decision to model a system that takes into account
for a worst case of noise or when the noise statistics are
partially known. Hence, H∞ filter is proposed in this paper
to study its behavior in SLAM to tolerate with such a robust
system. The development of H∞ filter for SLAM problem
is theoretically shown with a brief comparison with Kalman
filter approach [7][8]. H∞ filter has been introduced by Mike
Grimble[9] and act as one of the set-membership approaches,
which assumes that the noise is known in bounded energy.
It is also a technique that assumed the systems are provided
with a priori information for estimation [10][11]. H∞ filter
guarantees that the energy gain from the noise inputs to the
estimation errors is less than a certain level.

Throughout this paper, we examine the Kalman filter and
H∞ filter performance in linear and nonlinear case SLAM
problem. We investigate the results using a constant motion
and sensors uncertainties with a perfect data association.
Even though this is seems to be simplistic, it gives a feasible
study about the estimation. H∞ filter is still new in the
robotic mapping problem solution schemes such as SLAM,
although it has desirable properties and competitive com-
pare to Kalman filter. Kalman filter and Extended Kalman
filter(EKF) have been studied immensely towards the SLAM
problem using various approaches such as in [12][13]. [14]
reported that, EKF with robocentric local mapping approach,
is able to decrease location uncertainty of each location.
West et.al [15] proved H∞ filter was competent with other
well-known approaches such as Kalman filter and Particle
filter for SLAM problem. However, they did not present
any theoretical explanation or contribution about H∞ filter
properties.

This paper is organized as follows. In section II, SLAM
preliminary model is presented. Section III describes a brief
introduction of H∞ filter with a comparison between H∞ algo-
rithm and the Kalman filter, while section IV demonstrates
the main results of convergence properties of H∞ SLAM.
Section V provides experimental results of H∞ SLAM prob-
lem. Section VI represents the experimental results of SLAM
using both filters. Finally section 6, concludes the paper.

II. SLAM PRELIMINARY MODEL

The robot kinematics model should be determined to
understand the robot motion through the environment. This
information is used to predict the robot trajectory through the
environment. The landmarks or features are also important to
explicitly represent the state of the environment. In our case,
landmarks are assumed to be stationary for convenience.
SLAM consists of two general model; Process Model and
Measurement/Observation Model. Each of this model plays
an important role to achieve better estimation about the
landmarks and robot location. For the SLAM process model,
we have the following. We consider linear SLAM as most
of the calculation is linearized in entire process and may
describe the whole system.

xRk+1 = FRkxRk +uRk + vRk , (1)

where FRk is the state transition matrix, xRk , is the robot
state, uRk is a vector of control inputs, and vRk is a vector
of temporally uncorrelated process noise errors with zero
mean and covariance, QRk . The location of the nth landmark
is denoted as pn. For the stationary landmarks p, and for
i = 1 . . .N states of landmarks are expressed as

pnk+1 = pnk = pn (2)

Using above notation with respect to [1], the augmented
process model consists of robot and landmarks location is
as following.

xk+1 = Fkxk +uk + vk (3)

On the other hand, the measurement model demonstrates in-
formation about relative distance and angle between the robot
and any landmarks. The measurement of an observation at
ith specific landmark/feature, yields the following equation.

zk = Hkxk +wk (4)

= Hpi pi −Hvkx(vk) +wk (5)

where wk is a vector of temporally uncorrelated observation
errors with zero mean and variance Rk. Hk is the observation
matrix and represent the output of the sensor zk to the state
vector xk when observing the ith landmark. Hpi and Hvk

is the observation matrix for the landmarks and the robot
respectively. Alternatively, the observation model for the i th

landmark is written in the form

Hi = [−Hv,0 . . .0,Hpi,0 . . .0] (6)

Above equation means observations are taken as a relative
measurement between vehicle and landmarks. Both models
are use recursively to predict and update both landmarks and
robot position. Based on the data obtained from these two
models, then the robot builds a map. Same to Kalman’s filter,
H∞ filter has the prediction and updates process. Details will
be explained in the next section consisting of some basic
assumption of noises and a brief comparison to the Kalman
filter approach.



III. H∞ FILTER-BASED SLAM

This section presents the development of H∞ filter-Based
SLAM by considering its convergence properties. Due to our
approach is probabilistic SLAM, the state covariance matrix
plays an important role to determine the level of confidence
for estimation. In SLAM, small state covariance matrix is
desired. Hence, the analysis is focusing on the convergence
behavior of H∞ filter-Based SLAM, whether it may surpass
Kalman filter performance or else.

The comparability of H∞ filter and Kalman filter for a
stationary robot case observing landmarks is evaluated in
the experiments. Some brief explanation and preparation
are introduced regarding the differences between H∞ filter
and Kalman filter before getting in depth with the filter
performance in SLAM. The papers in [7][9] presented a
satisfactory explanation of the H∞ filtering. Referring to
those, we first assume for the noise to have the following
statistic.

Assumption 1: R
Δ= DDT ≥ 0

The above assumption is used to define that the measure-
ments are correlated with noise. We also assume that the
noise is in bounded energy which also a characteristic of H∞
filter. This is the main dissimilarity between H∞ filter and
Kalman filter.

Assumption 2: Bounded noise energy; ∑N
t=0 ‖wk‖2 <

∞,∑N
t=0 ‖vk‖2 < ∞

Σ0 ≥ 0, Qk ≥ 0, and Rk ≥ 0 are the weighting matrices for
state xk, noise wk, and vk respectively. Details of H∞ filter,
is included in [7].

The difference between Kalman filter and H∞ filter exists
in the form of gain and covariance characteristics for each
prediction and updates process. For Kalman filter, the equa-
tion for its gain and covariance are given by,

Kk = Pk(I +HT
k R−1

k HkPk)−1 (7)

Pk+1 = FkPk(I +HT
k R−1

k HkPk)−1FT
k +Qk (8)

As for H∞ filter, the equation for its gain and covariance are
given by

Kk = Pk(I− γ−2IPk +HT
k R−1

k HkPk)−1 (9)

Pk+1 = FkPk(I− γ−2IPk +HT
k R−1

k HkPk)−1FT
k +Qk(10)

I is an identity matrix with an appropriate dimension. Stated
above, H∞ filter depends on the covariance matrix of error
signals, Qk,Rk which are chosen and designed to achieve
desired performance and all of these parameters must be
bigger than zero. It is observable that, if γ values become
bigger, this equation will be the same as (7),(8) of Kalman
filter.

IV. MAIN RESULTS

We begin the convergence analysis of H∞ filter by pre-
senting the filter algorithm as stated below. The solution of
an H∞ filtering problem is as following[7],

Pk+1 = FkPkψ−1
k FT

k +GkQkG
T
k , P0 = Σ0 (11)

ψk = I +(HT
k R−1

k Hk − γ−2I)Pk (12)

where I is an identity matrix with an appropriate dimension.
Equation (11), (12) holds a Positive Semidefinite(PsD) solu-
tion if it satisfies

P̂−1
k − γ−2I ≥ 0, k = 0,1, . . . ,N, (13)

where
P̂k = (P−1

k −HT
k R−1

k Hk) ≥ 0 (14)

For γ > 0, the suboptimal H∞ filter is given by below
equations.

x̂k+1|k = Fkx̂k|k (15)

x̂k|k = x̂k|k−1 +Kk[yk −Hkx̂k|k−1], x̂0|−1 = x̄0 (16)

Kk = PkHk(HkPkHT
k +Rk)−1 (17)

Assumption 3: (F,H) is observable and (F,G) is control-
lable.

Lemma 1: Equation (11) is a PsD matrix if and only if
Rk ≤ γ2.

Proof: For convenience, a 1-D monobot observing one
landmark case is considered. Given that the initial covariance
matrix, P0

P0 =
[
PR 0
0 Pm

]
(18)

where PR is the monobot state covariance and Pm is a
landmark state covariance. If γ 2 ≥ Rk then (12) exhibit a
PsD matrix. This can be proven as follows. Note that for
1-D monobot case, the measurement matrix becomes H =
[−1 1].

HT
k R−1

k Hk − γ−2I =
[
R−1

k − γ−2 R−1
k

R−1
k R−1

k − γ−2

]

≥ 0 (19)

If else, (19) will exhibit negative definite matrix and therefore
causing unreliable estimation to H∞ filter.

Even though Lemma 1 illustrates the results of a monobot,
these result can reasonably aid the analysis for more complex
system of 2D and 3D systems as (11), (12) act as the main
algorithm for H∞ filter. We proposed some other conditions
for H∞ filter in SLAM in the following theorem.

Theorem 1: Assume that Assumptions 1∼2 are satisfied.
For γ > 0, the map uncertainties are gradually decrease if
the following conditions are satisfied.

1) Equation (14) is also a PsD if the the measurement
covariance noise, R is bigger than the state covariance
matrix, P

2) γ−2 must be less than (14)
3) HT

k R−1
k Hk − γ−2I ≥ 0

4) Lemma 1 is satisfied

If else, the state covariance matrix is not decreasing.
Proof: We begin the proof by define the initial state

covariance matrix, P0 ≥ 0, the process noise, Qk ≥ 0 and the
measurement noise, Rk ≥ 0. To ensure the state covariance
matrix converge, there are some conditions to be satisfied.
First, for γ > 0, (14) is also a PsD if the measurement
covariance noise, R is bigger than the state covariance matrix,
P. Second, in order to realize (13), γ −2 must be less than



(14). Next, it is understood that, if previous condition is
satisfied, then HT

k R−1
k Hk − γ−2I ≥ 0. Finally for γ 2 > R, (12)

result in PsD matrix. These four conditions must be fulfilled
to achieve convergence of the state covariance matrix. If
those conditions are satisfied, then from (10), the state
covariance matrix P, can be simplified as following. Let
Wk = HT

k R−1
k Hk − γ−2I ≥ 0.

Pk+1 = [P−1
k +Wk]−1 ≥ 0 (20)

Pk+2 = [P−1
k+1 +Wk+1]−1 (21)

= [[P−1
k +Wk]−1 +Wk+1]−1 (22)

≤ Pk+1 (23)

From the PsD properties, any submatrix of a PsD is also
a PsD. Hence, the submatrix of the landmarks components
also have the same characteristics.

Pk+1mm ≤ Pkmm (24)

We also found that for a case of the observation noise, R >>
γ , the state covariance matrix will not be a positive definite
matrix and therefore, may result in unstable estimations.

It is also obvious that for a case of stationary landmarks,
there is no process noise incorporated in the landmark’s
state’s estimation. Thus, all the landmark covariance is
expected to be constant through the observations. In other
words, it is expected theoretically in the limit, the landmark
covariance yield

Pk+1mm ≈ Pkmm (25)

Unfortunately, we show that this is not actually describes for
the whole state covariance matrix in the next theorem.

State covariance matrix, P is generally a representation of
uncertainties for each state estimation. [3] proposed some
convergence properties for Kalman filter-Based SLAM. The
results are then analyzed further in the nonlinear system by
[16]. For H∞ filter in linear case SLAM, the convergence
properties of a stationary robot observing landmarks are still
unknown.

Theorem 2: Suppose that Theorem 1 is satisfied. For a
stationary robot observing a stationary landmark m, with γ >
0, as more n-times(n > 0) observation is made, in the limit,
the whole covariance matrix is converging to

Pn
k+1 =

[
P11 P12

P21 P22

]
(26)

where

P11 = [P−1
vv +n(R−1 − γ−2I)−nR−1(R−1 − γ−2I)−1R−1]−1

P12 = −P11R−1(R−1 − γ−2I)−1

P21 = −(R−1 − γ−2I)−1R−1P11

P22 = (R−1 − γ−2I)−1

+(R−1 − γ−2I)−1R−1P11R−1(R−1 − γ−2I)−1

If P11 exhibit a PsD, then the whole state covariance is
decreasing. Else, the estimation is faulty.

Proof: Again we consider a 2D robot with initial
covariance matrix P0, given by the following,

P0 =
[
Pvv 0
0 Pmm

]
(27)

Assume that the robot is observing one landmark m at
a certain point. From (18), when the stationary robot is
observing m landmarks n times, we obtained the following
equations.

P−1
k+1 = P−1

0 +n(HT
k R−1

k Hk − γ−2I) (28)

= P−1
0 +n

[
R−1 − γ−2I R−1

R−1 R−1 − γ−2I

]
(29)

Assume that the initial state covariance matrix for the land-
marks is very big. Then above equation yields

P−1
k+1 =

[
P−1

vv 0
0 P−1

mm

]
+n

[
R−1 − γ−2I R−1

R−1 R−1 − γ−2I

]
(30)

Finding the inverse matrix of (29) using the Matrix Inversion
Lemma, yields

Pk+1 =
[
P11 P12

P21 P22

]
(31)

where
P11 = [P−1

vv +n(R−1 − γ−2I)−nR−1(R−1 − γ−2I)−1R−1]−1

P12 = −P11R−1(R−1 − γ−2I)−1

P21 = −(R−1 − γ−2I)−1R−1P11

P22 = (R−1 − γ−2I)−1

+(R−1 − γ−2I)−1R−1P11R−1(R−1 − γ−2I)−1

As long as R−1 − γ−2I ≥ 0, (29) is a PsD. Furthermore,

R−1 − γ−2I ≥ R−1(R−1 − γ−2I)−1R−1

R(R−1 − γ−2I)R ≥ (R−1 − γ−2I)−1

Above equation can be verified under the properties of PsD
matrix. Furthermore, from (29) and Lemma 1, it can be
notice that for a case of the observation noise R >> γ 2, the
state covariance matrix may have a negative definite matrix
that is an unexpected behavior in probabilistic SLAM. The
designer must choose an appropriate value to satisfy this
condition.

For the Kalman filter case, the state covariance is given
by

P−1
k+1 = P−1

0 +n(HT
k R−1

k Hk) (32)

= P−1
0 +n

[
R−1 R−1

R−1 R−1

]
(33)

Inverting the above matrix yield

Pn
k+1 =

[
Pvv −Pvv

−Pvv R+Pvv

]
(34)

Observing the fact obtained by Theorem 1, it implicitly deter-
mines that the state covariance matrix for H∞ filter is slightly
bigger than Kalman’s filter. The second and third variables
on the right hand of (28) show explicitly the increment of
the state covariance matrix of H∞. The conditions shown



TABLE I

EXPERIMENTAL PARAMETERS

γ 9
Process noise 0.000001

Observation noise,R
[

0.001 0
0 0.001

]

Random noise observation,R

⎡
⎢⎣

Rθmax = 0.05
Rθmin = −0.05

Rdistancemax = 0.2
Rdistancemin = −0.2

⎤
⎥⎦

Initial Covariance(Case 1)Pvv,Pmm 0.00001, 10000

Initial Covariance(Case 2)Pvv,Pmm 0.0001, 0.001

Fig. 2. Indoor experimental environment

in Theorem 1 clarify further that designer must choose an
appropriate noise energy level and γ to achieve desired per-
formance. Furthermore, R−1 − γ−2I formulate how actually
γ attempt to reduce the noise effect to the system. Besides,
it proves that in the limit, the landmark state covariance is
bigger than the initial condition.

V. EXPERIMENTAL RESULTS

This section evaluates the proposed theorems in an indoor
environment. The environment of the experiments is shown
in Fig.2 which consists of an E-puck robot with some
available landmarks. Two kinds of initial state covariance are
used to investigate both EKF and HF filter convergence and
behavior in SLAM problem. E-puck robot moves through
the environment and observing its surrounding. We use a
camera sensor as a virtual sensor to evaluate the performance
between H∞ filter and Kalman filter. The results should
be consistent with the proposed theorems. We made some
assumptions as stated below for the experiment to ensure that
the characteristics and consistency are inherent as shown in
the convergence theorems.

Assumption 4: Robot is in planar world
Assumption 5: Landmarks are stationary and consists of

point landmarks
For the zero mean gaussian case, there are no big differ-

ences between EKF and H∞(HF) estimations. Both filters can
fairly estimate the robot path and landmarks location as seen
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Fig. 3. Constructed map under zero mean Gaussian noises
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Fig. 4. Robot and landmarks covariances under zero mean Gaussian noises

on Fig.3. Both estimations show familiar results and capable
of build the map. Looking at the state covariance matrix,
Fig.4 shows that in both robot and landmarks covariance,
HF state covariance matrix is converging although it showed
a slightly higher covariances than Kalman filter. In this case,
KF performance is better than HF.

Both Fig.5 and Fig.6 demonstrates the results of applying
case 2 initial covariance into the system where the robot
initial uncertainties become bigger. Both filters shows diverse
estimations. But it is observable HF perform better in this
case. KF estimation is erroneous even though the landmark
initial covariance is small. This result proves that HF is more
robust than KF for robot with bigger uncertainties. Fig.8
illustrate that HF covariances are also converging which
satisfies Theorem 2 although it is bigger than KF. This is
still acceptable as the estimation is better than KF.

There is also a need to investigate the case that has
been proposed in Lemma 1 and Theorem 1. In the case of
γ2 << R, HF incapable to achieve better results than Kalman
filter. The estimation of the robot position as shown in Fig.8
demonstrates that HF estimations exhibit erroneous results
and inherently causing unreliable estimations of both robot
and landmarks location. Therefore, in HF, γ 2 << R must be
satisfied to achieve desired results and performance.
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VI. CONCLUSIONS

H∞ filter is still new and may need further improvement
and development to achieve stable and motivating results.
Even so, H∞ filter is capable to approximate linear and
non-linear system that has wide coverage and variety of
noise and proven to be useful for SLAM problem. We
demonstrated in this paper that the HF estimation results in
better performance than KF in a case where the robot initial
uncertainties is big even if the landmarks initial covariance is
small. The results also consistent with the fundamental lies
in H∞ filter where the designer should consider appropriate
level of weighting noise of Q, and R to achieve certain level
of performance.
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