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Abstract— This paper deals with a passive-decomposition
based control of bilateral teleoperation between a single master
robot and multiple cooperative slave robots under time varying
delay in the communication line. At first, we decompose the
dynamics of multiple slave robots into two decoupled dynam-
ics: the Shape-System describing dynamics of the cooperative
works, and the Locked-System representing overall behavior
of the multiple slave robots. Second, we propose a PD control
method for bilateral teleoperation to guarantee the asymptot-
ical stability of the system for time varying delay. Finally,
experimental results show the effectiveness of our proposed
teleoperation.

I. INTRODUCTION
Teleoperation systems allow person to extend their sense

and manipulation capabilities to remote place. In general,
slave robot is controlled to do some real tasks at the remote
place by the controlled signals that send from the master
side. It is composed communication channels to connect
the robots and the remote environment. In bilateral control,
contact information will feed back to the master side when
the salve robot interacts with the remote environment,
therefore the manipulation capability can be improved
[1]. One absolutely unsolved problem of the control of
teleoperation system is time delay in communication line.
The delay may destabilize and deteriorate the transparency
of the teleoperation system. In addition, the master and
the slave are couple via a communication network (e.g
internet), the time delay is incurred in the transmission of
data between the master and the slave side. Therefore, it is
necessary to design a control law to guarantee the stability
of the system under communication delays. The time delay
is not only constant but also variable.

Up to now, many successful control schemes have been
proposed for the teleoperation system with singer master
singer slave (SMSS). However, the teleoperation systems
with multirobot are relative rare. In [2], [3], [4], [5] some
control methods were proposed for the system with multiple
mater multiple slave (MMMS). In this system, one human
can control one slave robot to perform separate operation
in a cooperative task, thus the system may demand a large
of number of human operators if the task requires many
slave robots. In [6], [7], [8], [9] the singer master multiple
slave (SMMS) systems were considered, but the control
methods were only proposed for the motion coordination.

Nam. D. D. and Y. Yamashina are with Division of Electrical Engineering
and Computer Science. Graduate School of Natural Science and Technology,
Kanazawa University, Kakuma-machi Kanazawa-City, Ishikawa, Japan, 920-
1192, JAPAN. namdd@scl.ec.t.kanazawa-u.ac.jp

T. Namerikawa is with the Department of System Design Engineering
Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 JAPAN.
namerikawa@sd.keio.ac.jp

Both systems (MMMS and SMMS) are applied for the tasks
which need the cooperation of many slave robots, such as
lifting heavy objects, assembly works etc.

In the SMMS systems, there is one master robot and
there are two or more slave robots. One human has to
operate all slave robots at the same time by using only
one master robot in a cooperative task. The control scheme
for this system is not easy, especially, in the case of the
movement and the contact force of each slave robot are
variety. The control algorithm of only one master robot is
required corresponding with the number of the slave robots.
To solve above difficulties, the method based Passive-
Decomposition is proposed as a technique for making two
or more slave robots cooperate in the SMMS system [4].
In this work, utilizing Passive-Decomposition, the dynamics
of the multiple cooperative slave robots is decomposed
into decouple systems while enforcing passivity. There are
two concepts: the Shape-System instructs the dynamics of
the cooperative work; the Locked- System abstracts the
overall dynamics of the multi-slave robots. To passive the
master-slave communication delay, the scattering-based
communication is utilized [10]. However in this work,
neither alignment error between each slave robot position
nor force reflection of them are guaranteed. On the other
hand, in [11], [12] the PD control was used without the
scattering conversion and the controller gains depend on
the maximum round-trip delay, however, the stability is
guaranteed with the communication delay.

In this paper, one control law that based on the technique
of [10], [11] for the SMMS system is proposed with time
varying delay in the communication line. This proposed
control is also guaranteed the asymptotical stability. In
[10], scattering conversion uses the PD control law with
constant time delay of communication lines, however
without using it for the time varying communication delay,
we also achieve the stability. In our proposed control law,
we assume using an individual gain for a different structure
of the master and the slaves. In the independent design, a
scaling power can be set to both sides of teleoperation. In
addition, the teleoperation achieves an asymptotical stable
with independent of time varying communication delay,
the master and slave spacing errors achieve zero, the static
reflection force is transferred when the cooperative slaves
contact with the remote environment in this control law. In
the experiment, two slave robots hold and carry one object
to one desired position, and this experiment results show
the effectiveness of our proposed control technique.



II. PROBLEM FORMULATIONS

1) Dynamics of Teleoperation System: In this section, the
dynamics of the SMMS system that composed one master
and N slave robots can be shown by a motion equation of a
general robot arm. The dynamic of the master with m-DOF
and the dynamics of the i slave with ni-DOF are shown as
follows:{

Mm(qm)q̈m +Cm(qm, q̇m)q̇m = τm + JT
m(qm)Fop

Mi(qi)q̈i +Ci(qi, q̇i)q̇i = τi + JT
i (qi)Fi

(1)

where the subscript “m” denotes the master and the subscript
“i” denotes order indexes of the slave, qm ∈ Rm×1, qi ∈
Rni×1 are the joint angle vectors, τm ∈ Rm×1, τi ∈ Rni×1

are the input torque vectors, Fop ∈ Rm×1 is the operational
force vector, Fi ∈ Rni×1 are the grasping force vectors,
Mm ∈ Rm×m, Mi ∈ Rni×ni are the symmetric and positive
definite inertia matrices, Cm(qm, q̇m)q̇m ∈ Rm, Ci(qi, q̇i)q̇i ∈
Rni are the centripetal and Coriolis torque vectors, Jm(qm) ∈
Rm×m, Ji(qi)∈Rni×ni are Jacobian matrices. However, degree
of freedom of the slave is assumed to be larger than the
degree of freedom of the master (ni ≥ m). The Jacobian
matrices satisfy below assumption:

Assumption 1: The Jm and Ji are nonsingular matrices at
all times in operation.

In this paper, we propose a control law for different
structural teleoperation. This control law of the system may
be not possible with some parameters in joint space, therefore
it is useful to rewrite the master and slave robot dynamics
directly in the task space. The end-effector velocities ẋm ∈
Rm×1 and ẋi ∈ Rni×1 in task space relate to the joint velocity
q̇m, q̇i as follows:

ẋk(t) = Jk(qk)q̇k(t), k = m, i. (2)

by father differentiation of (2) as:

ẍk(t) = Jk(qk)q̈k(t)+ J̇k(qk)q̇2
k(t), k = m, i. (3)

where ẍm ∈ Rm×1 and ẍi ∈ Rni×1 are the end-effector acceler-
ation vectors. Substituting (2) and 3 into (1), we can receive
the master and multiple slave robots dynamics in the task
space as follows:

M̃m(qm)ẍm +C̃m(qm, q̇m)ẋm = J−T
m τm +Fop (4)

M̃i(qi)ẍi +C̃i(qi, q̇i)ẋi = J−T
i τi +Fi (5)

where: M̃k = J−T MkJ−1
k , C̃k = J−T

k {Ck−MkJ−1
k J̇k}J−1

k , (k =
m, i), xi is end-effector of each slave robot in Cartesian
coordinate system of multiple slaves. Let us denote the total
degree of freedom of the N slave robots by: n = ∑N

i ni, hence
the group dynamics of N slave robots can be rewritten as
follows:

M̃(q)ẍ+C̃(q, q̇)ẋ = τ +F (6)

where x = [xT
1 , . . . ,xT

N ]T ∈ Rn, τ = [τT
1 J−T

1 , . . . ,τT
N J−T

N ]T ∈
Rn, F = [FT

1 , . . . ,FT
N ]T ∈ Rn, and M̃(q) = diag[M̃1(q1), . . . ,

M̃N(qN)]∈Rn×n, C̃(q, q̇) = diag[C̃1(q1, q̇1), . . . ,C̃N(qN , q̇N)]∈
Rn×n are the inertia matrices and Coriolis matrices, respec-
tively. It is well known that the dynamics (4) and (5) have

several fundamental properties under the assumption 1 as
follows:

Property 1: The inertia matrices M̃k(qk) (k = m, i) are
symmetric and positive definite and there exists some posi-
tive constant mk1,mk2, ck in [13] such as:

0 < mk1 ≤ ‖ M̃k ‖≤ mk2; ‖ C̃k ‖≤ ck ‖ ẋk ‖ (7)
Property 2: Consider an appropriate definition of the ma-

trices C̃k(qk, q̇k), the matrices Ñk = ˙̃Mk(qk−2C̃k(qk, q̇k)) are
skew symmetric as in [13] such that:

zT Ñkz = 0 (k = m, i) (8)

where z ∈ Rn×1 is any vector.
Property 3: ẋk, ẍk (k = m, i) are bounded and ˙̃Mk,

˙̃Ck are
also bounded [14]
Communication delay is assumed as follows:

Assumption 2: Both time varying delay Tm(t) and
Ts(t) are continuously differentiable function and possibly
bounded as:

0≤ Th(t)≤ T +
h < ∞, |Ṫh(t)|< Ṫ +

h , h = m,s (9)

where T +
h , Ṫ +

h ∈ R are upper bounds of the communication
delays. Moreover, the upper bound of the round trip com-
munication delay T +

ms = T +
m +T +

s is known preliminarily.
Assumption 3: The delays among all slave robots can be

disregarded to be very small.

A. Control Objectives

In this paper, the SMMS system is shown in Fig. 1 with
one master and two slave robots. The slave robots grasp
one object to transport to a specified place according to the
instruction values of a control law in the task space.

Control Objective 1: (Autonomously Grasping by Multi-
ple Slave Robots) In this work, the grasping achievement
with its definition:“relative position of the end-effectors
of the slave robots becomes a certain specified shape” is
achieved as the following condition:

xS = xd
S (10)

where xS ∈ Rn−m is the relative position of the end-effector
of the slaves, xd

S ∈ Rn−m is a desired position of xS.
Control Objective 2: (Movement of Grasped Object)

When the grasping is achieved, the center position between
the end-effector of the slave robots is same the center position
of the grasped object, then the movement of the grasped
object is achieved as:

xL = xm (11)
where xL = αxL0−C, xL0 ∈Rm and xm are the center position
of the end-effectors and the grasped object, respectively; α ∈
R is the position scale, C ∈ Rm is shown a translation value.

Control Objective 3: (Static Force Reflection) The teleop-
eration with static Force Reflection is achieved as ẋ j = ẍ j =
0( j = m,L) such that:

Fop =−βFL (12)

where FL is the contact force of cooperative-slave, β > 0∈ R
is a positive scalar and it expresses a force scaling effect.
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Fig. 1. SMMS Teleoperation System

III. CONTROL SYSTEM DESIGN

In this section, to achieve above Control Objectives, we
propose a control law for the SMMS system.

A. Passive-Decomposition

First, base on Passive-Decomposition that was introduced
by D. Lee [10], the dynamic of multiple slave robots is
decomposed into two decouple systems: the Shape-System
describing “movement of the multiple slaves with grasping
object” and the Locked-System describing “movement of the
multiple slaves according to the instruction from the master”.
Utilizing the Passive-Decomposition, the velocity of multiple
slave robots is rewritten with each system as follows:

ẋ = S−1
[

ẋS
ẋL

]
(13)

where ẋS ∈ Rn−m and ẋL ∈ Rm are velocities of the Shape-
System and the Locked-System, respectively. S is the non-
singular decomposition matrix. The matrix S is also a positive
matrix of a decoupling shape and locked system. In the
following formula of S−T M̃S−1, the non-diagonal terms
become 0 as:

S−T M̃S−1 =
[

MS 0
0 ML

]
(14)

where MS ∈ R(n−m)×(n−m), ML ∈ Rm×m are inertia matrices
of the Shape-System and the Locked-System, respectively.
In the fact that, ẋs and ẋL are defined for satisfying (14).
In addition, a local compensation of impedance shaping is
necessary. The reflection forces from environment relate with
the control input of slave dynamics of the Shape-System and
the Locked-System as follows:

[
FS
FL

]
= S−T

[
F1
F2

]
,

[
τS
τL

]
= S−T

[
τ1
τ2

]
(15)

from above definitions, we define:
[

CS CSL
CLS CL

]
= S−T M̃

d
dt

(S−1)+S−TC̃S−1 (16)

note (6), the Passive-Decomposition form is written as:

MS(q)ẍS +CS(q, q̇)ẋS +CSL(q, q̇)ẋL = τS +FS (17)
ML(q)ẍL +CL(q, q̇)ẋL +CLS(q, q̇)ẋS = τL +FL (18)

where the subscript “S“ denotes the Shape-System and
the subscript “L“ denotes the Locked-System. The above
dynamic equations include friction terms CSL(q, q̇)ẋL and
CLS(q, q̇)ẋS, however, ignore the remote control by the

human, decoupling of the Shape-System and the Locked-
System is desired for the slave that maybe autonomous
grasping. Therefore, the decoupling control inputs are given:

τS = CSL(q, q̇)ẋL + τ
′
S (19)

τL = CLS(q, q̇)ẋS + τ
′
L (20)

where τ ′S, τ ′L are new control inputs. Substituting (19), (20)
into (17), (18), we get:

MS(q)ẍS +CS(q, q̇)ẋS = τ
′
S +FS (21)

ML(q)ẍL +CL(q, q̇)ẋL = τ
′
L +FL (22)

hence, two above dynamics become a decoupling.
These dynamics are similar to the normal dynamics and

some properties are given as follows:
Property 4: Mi(q)(i = S,L) is a positive symmetric ma-

trix, and there exists some constant parameters with below
relationship as :

0 < mi1 ≤‖Mi ‖≤ mi2

‖Ci ‖≤ ci ‖ ẋi ‖ (23)
Property 5: Ṁi(q)−2Ci(q, q̇) (i = S,L) is skew-symmetric

matrix.
Property 6: ẋi, ẍi (i = S,L) are bounded and Ṁi,Ċi are also

bounded.
Proof: In Properties 4 and 6, Mi,Ci (i = S,L) are defined

by (14) and (16), respectively. We also can see from S,
Properties 1 and 3.

From Property 5, we can get:
[

ṀS−2CS −2CSL
−2CLS ṀL−2CL

]

=
d
dt

(S−T M̃S−1)−2S−T M̃
d
dt

(S−1)−2S−TC̃S−1 (24)

Using above skew-symmetric property of ˙̃M−2C̃ and the
symmetric property of M̃, we get:

[
ṀS−2CS −2CSL
−2CLS ṀL−2CL

]
=−

[
ṀS−2CS −2CSL
−2CLS ṀL−2CL

]T
(25)

therefore, the skew-symmetric matrices ṀS−2CS, ṀL−2CL
are equivalence.

Properties 4 ∼ 6 denote the feature of motion equation
of normal robots, otherwise, we can applied them for the
control law of abundance robots.

The following assumptions are from (1), (21), (22) and
used in next stability analysis section.

Assumption 4: In the control of the Locked-System that
includes the environment and grasping object. Following the
model of the passive system, the velocities ẋm, ẋL are system
inputs, the force Fop, FL are system outputs. Moreover, the
energy is limited by the function with velocity of the master
in the Locked- System.

Assumption 5: The velocities ẋm, ẋL equal zero for t < 0



B. Proposal Control Law
Concerning the control law of the Shape-System (21), the

Control objective of this system is: xS = xd
S , then the position

tracking with this control law is shown as follows:

τ
′
S =MS{ẍd

S(t)−KS
d (ẋS− ẋd

S(t))−KS
P(xS− xd

S(t))}
+CSẋS−FS (26)

Substituting (26) into (21) we obtain the following closed-
loop systems:

ë+KS
d ė+KS

Pe = 0,

e = xS− xd
S (27)

where KS
d , KS

P are positive definite diagonal gain matrices.
Remark 1: In the control law of this work, information of

grasped object is necessary for position control. Moreover,
to satisfy the Control objective 1 (10), the object is assumed
to be not too hard.

Considering the coupling control of the Locked-System
and the master. Note the Control objective: xL = xm, the
control law is defined as:

τ
′
L =−KL

d ẋL−KL
P(xL− xm(t−Tm(t))) (28)

τm = JT
m{−Km

d ẋm−Km
P (xm− xL(t−Ts(t)))} (29)

Substituting above control law into the Locked-System
(22) and dynamic equation of the master (4), we obtain a
closed-loop system as follows:

ML(q)ẍL +CL(q, q̇)ẋL

=−KL
d ẋL−KL

P(xL− xm(t−Tm(t)))+FL (30)

M̃m(qm)ẍm +C̃m(qm, q̇m)ẋm

=−Km
d ẋm−Km

P (xm− xL(t−Ts(t)))+Fop (31)

where K j
P, K j

d ( j = m,L) are gains and defined as follows:
{

Km
P = kmKP

KL
P = kLKP

,

{
Km

d = kmKd
KL

d = kLKd
(32)

where KP ∈ Rn×n, Kd ∈ Rn×n are positive definite diagonal
control gains; km > 0,kL > 0 are constant gains of scalar that
designed separately on the master and the slave side.

IV. STABILITY ANALYSIS

A. Stability of Shape-System
The below theorem consists of the Shape-System.
Theorem 1: Consider the closed-loop Shape-System (27)

and Assumption 4, desired value of relative position of
spaces between the slave robots is conversed as follows:

e = xS− xd
S → 0 as t → ∞ (33)

Proof: The equation (27) can be rewritten as follows:[
ė
ë

]
= φ

[
e
ė

]
, φ =

[
0 I

−KS
P −KS

d

]
(34)

where KS
P,KS

d are positive diagonal matrices, eigenvalue φ
becomes negative, therefore following errors of position and
velocity are achieved:

e = xS− xd
S → 0 as t → ∞ (35)

ė = ẋS− ẋd
S → 0 as t → ∞ (36)

it means the Control Objective 1 is achieved and the au-
tonomous grasping of multiple slaves is also achieved.

B. Stability of Locked-System

The following theorem consists of the dynamics (30), (31).
Theorem 2: The equations (30), (31) indicate the teleop-

eration system, the Assumption 1∼5 are approved and the
control gains KP,Kd are used as below:

KP <
2

T +
ms

Kd (37)

here, the velocities of the master and the slave are asymp-
totical convergent to origin, the position error is unbounded,
then the system becomes an asymptotical stable.

Proof: State vector x(t) = [ẋT
m, ẋT

L ,xT
e ]T is used. We

define a Lyapunov function for the system as:

V (x(t)) =k−1
m ẋT

m(t)M̃mẋm(t)+ k−1
L ẋT

L (t)MLẋL(t)

+ xT
e (t)KPxe(t)−2k−1

m

∫ t

0
FT

L (ξ )ẋL(ξ )dξ

−2k−1
L

∫ t

0
FT

op(ξ )ẋm(ξ )dξ (38)

where M̃m,ML,KP are positive definite matrices, km,kL >
0. Following the Assumption 4, the environment and the
manipulator are passive, then V (x(t)) is the positive function.
The derivative of above Lyapunov function along trajectories
of the system (30), (31) with concerning Properties 2 and 5
as:

V̇ =−2ẋT
mKd ẋm +2ẋT

mKP(xL(t−Ts(t))− xL)

−2ẋT
L Kd ẋL +2ẋT

L KP(xm(t−Tm(t))− xm) (39)

applying Leibniz-Newton formula:

xi(t−Th(t))− xi =−
∫ Th(t)

0
ẋh(t−ξ )dξ , (h = m,s) (40)

substituting (40) in to (39), we get:

V̇ =−2ẋT
mKd ẋm−2ẋT

mKP

∫ Ts(t)

0
ẋL(t−ξ )dξ

−2ẋT
L Kd ẋL−2ẋT

L KP

∫ Ts(t)

0
ẋm(t−ξ )dξ (41)

The second term at the right side of (41) is transformed
as follows:

−2ẋT
mKP

∫ Ts(t)

0
ẋL(t−ξ )dξ =−

n

∑
j=1

KP j2ẋm j

∫ Ts(t)

0
ẋL j(t−ξ )dξ

(42)

where ẋm j, ẋL j,KP j are velocities of the master and slave
(following the j axis) and positional control gains, respec-
tively. In (42), applying Young and Schawartz inequality for
the term in the right side, then note the inequality Ts ≤ T +

s ,
we get:

−2ẋm j

∫ Ts(t)

0
ẋL j(t−ξ )dξ ≤ T+

s ẋ2
m j +

1
T+

s

{
Ts

∫ Ts(t)

0
ẋ2

L j(t−ξ )dξ
}

≤ T+
s ẋ2

m j +
∫ T +

s

0
ẋ2

L j(t−ξ )dξ (43)



Therefore, (42) is rewritten as follows:

−2ẋT
mKP

∫ Ts(t)

0
ẋL(t−ξ )dξ ≤

n

∑
j=1

KP j

{
T +

s ẋ2
m j +

∫ T +
s

0
ẋ2

L j(t−ξ )dξ
}

= T+
s ẋT

mKPẋm +
∫ T +

s

0
ẋT

L (t−ξ )KPẋL(t−ξ )dξ (44)

Similar to (41), the fourth term in the right side can also
be rewritten. We receive below inequality from (41) as:

V̇ ≤−2ẋT
mKd ẋm−2ẋLKd ẋL

+T +
s ẋT

mKPẋm +
∫ T+

s

0
ẋT

L (t−ξ )KPẋL(t−ξ )dξ

+T +
m ẋT

L KPẋL +
∫ T+

m

0
ẋT

m(t−ξ )KPẋm(t−ξ )dξ (45)

here, integrating both side of above inequality [0, t], we get:
∫ t

0
V̇ dτ ≤−2

∫ t

0
ẋT

mKd ẋmdτ−2
∫ t

0
ẋT

L Kd ẋLdτ

+
∫ t

0
T +

s ẋT
mKPẋdτ +

∫ t

0
T +

m ẋT
L KPẋLdτ

+
∫ t

0

∫ T+
s

0
ẋT

L (τ−ξ )KPẋL(τ−ξ )dξ dτ

+
∫ t

0

∫ T+
m

0
ẋT

m(τ−ξ )KPẋm(τ−ξ )dξ dτ (46)

here, the fifth and sixth terms of right side in (46) can be
transformed by a simple calculation as follows:

∫ t

0

∫ T+
s

0
ẋT

L (τ−ξ )KPẋL(τ−ξ )dξ dτ

≤ T +
s

∫ t

0
ẋT

L (τ)KPẋL(τ)dτ (47)
∫ t

0

∫ T+
m

0
ẋT

m(τ−ξ )KPẋm(τ−ξ )dξ dτ

≤ T +
m

∫ t

0
ẋT

m(τ)KPẋm(τ)dτ (48)

Substituting (47), (48) into (46), we obtain:
∫ t

0
V̇ dτ ≤−

∫ t

0
ẋT

L{2Kd −T +
msKP}ẋLdτ

−
∫ t

0
ẋT

m{2Kd −T +
msKP}ẋmdτ (49)

Therefore, we can choose the gain KP,Kd to satisfy
(37), thus (49) is semi-negative with denoting ẋm, ẋL ∈L2.
Moreover, applying Properties 1, 4 and the Assumption 4
for the dynamics of system (30), (31), we conclude that the
signal ẍm, ẍL ∈L∞. Thus, using lemma of [14], this implies
that limt→∞ ẋm = limt→∞ ẋL = 0, and using Properties 3, 6, we
also can conclude

...x m,
...x L ∈L∞. Hence, invoking Barbalat’s

lemma [15], ẍm, ẍL are uniformly continuous; limt→∞ ẋm =
limt→∞ ẋL = 0 and limt→∞ ẍm = limt→∞ ẍL = 0. Therefore the
system is asymptotic stable.

In addition, two below corollaries that relate above theo-
rem as:

Corollary 1: It implies that the teleoperation system de-
scribed by (4), (22) satisfy the Theorem 2. When FL = 0, the
master and slaves spacing error achieve to zero as below:

xe = xm− xL → 0 as t → ∞ (50)

Proof: when FL = 0, equation (30) as:

KP(xL− xm(t−Tm(t))) = 0 (51)

Moreover, using Leibniz-Newton formula, following equa-
tion is achieved:

KP

{
xe−

∫ t

t−Tm

ẋmdt
}

= 0 (52)

where limt→∞ ẋm = 0, KP is a positive symmetric matrix,

lim
t→∞

xe = 0 (53)

hence the position error of the master and the slave robots
is to zero. Thus, the Control Objective 2 is achieved.

Corollary 2: It implies that the teleoperation system de-
scribed by (4), (22) satisfies Theorem 2. We obtain that the
scaled reflection force from remote environment is accurately
transmitted to the slave robot side as follows:

Fop =−βFL, (β =
km

kL
) (54)

Proof: From Theorem 2, limt→∞ ẍm= limt→∞ ẍL =
limt→∞ ẋm = limt→∞ ẋL = 0, and concerning about (30), (31)
we can obtained:{

Fop = Km
P (xm− xL) = kmKP(xm− xL)

FL = KL
P(xL− xm) =−kLKP(xm− xL) (55)

From equation (55), we get above expression (54)

Fop =−βFL, (β =
km

kL
)

we should choose the design parameters of scalar km,kL
for power scaling. Therefore, the static reflection force is
achieved.

V. EVALUATION BY CONTROL EXPERIMENTS
A. Impedance Shaping

In this paper, the SMMS system was constructed with two
of 2-DOF serial-link arm of slave robots. Some parameters
xS,xd

S ,xL are defined as follows:

xS = x̄1− x̄2 =
[

x1− x2
y1− y2

]
(56)

xd
S =

[
d
0

]
(57)

xL = α
x̄1 + x̄2−C

2
=

α
2

[
x1 + x2− c

y1 + y2

]
(58)

where C = [c 0]T , x̄1 = [x1 y1]T , x̄2 = [x2 y2]T ; from (56)
and (58) we get:

[
ẋS
ẋL

]
=

[
˙̄x1− ˙̄x2

α
2 ( ˙̄x1 + ˙̄x2)

]
=

[
I −I

α
2 I α

2 I

][
˙̄x1
˙̄x2

]
(59)

We define the decomposition matrix S as follows:

S =
[

I −I
α
2 I α

2 I

]
(60)

However, the non-diagonal term has remained without
filling (14) with the decomposition S. Thus, the linearization
of the slaves with the impedance shaping is given:

τi = JT
i {MiH−1

0 (τ
′
i +Fi)+Fi +Ciẋi} (i = 1,2) (61)
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where τ ′i is a new control input, H0 is inertia matrix of
device. To satisfy (14), by a simple calculation, we can
receive the slave 1 and 2 with same inertia matrix. Therefore,
substituting M1 = M2 = H into slave dynamic (61), we
obtain: [

H 0
0 H

][
ẍ1
ẍ2

]
=

[
τ ′1
τ ′2

]
+

[
F1
F2

]
(62)

from (14), we get:

S−T MS−1 =
[ 1

2 I − 1
2 I

1
α I 1

α I

][
H 0
0 H

][ 1
2 I 1

α I
1
2 I − 1

α I

]

=
[ 1

2 H 0
0 1

α2 H

]
=

[
MS 0
0 ML

]
(63)

In addition, since (14) is satisfied, it is early to see that
the Shape-System and the Locked-System to be decoupling.
If the Passive-Decomposition is denoted by (62), we receive:

[
MS 0
0 ML

][
ẍS
ẍL

]
=

[
τ ′S
τ ′L

]
+

[
FS
FL

]
(64)

Therefore, by the definition of xS,xL mentioned above, the
Shape- System and the Locked-System are decoupling by the
impedance shaping only.

B. Evaluation by Control Experiments
In this section, the effectiveness of the proposal methodol-

ogy is verified by the control experiment. In the experiment,
the SMMS system is constructed by one master with two
DOFs parallel link type arm and two slaves with two-two
DOFs series link type arms. The experiment setup is shown
in Fig. 2. The cylindrical grasping object is used and shown
in Fig. 3. We can measure the operational force Fop and
environment reflecting force FL by using the force sensors.
For implementation of the controllers and communication
lines, we utilise a dSPACE digital control system (dSPACE
Inc.). All experiments have been done with the artificial
time varying communication delays and the sampling time
is 1[ms]: {

Tm(t) = 0.1sin t +0.14 [s]
Ts(t) = 0.05sin t +0.1 [s] (65)

From above equation, maximum round-trip delay is
[0.39]. To satisfy (37) the controller gains are chosen as:
KP = diag(30,35), Kd = diag(6,7), km = 1,kL = 10, KS

P =
diag(400,400), KS

d = diag(50,50). Two kind of experimental
conditions are given as follows:

Case 1: Control the grasping object without any contact with

remote environment
Case 2: Control the grasping object in contact with remote
environment

However, in actual experiments, it is difficult for entirety
time synchronization on mater and slave side in the sys-
tem configuration. The data that received from master and
the data of slave that measured from slave side need be
compared, especially the position data on the slave side.
In addition, the force data is not sent and received, then
the measurement value is used. Therefore, the gap of the
time axis is caused for the force data to be not same at the
both sides of teleoperation. Moreover, there is not sensor
in the parallel link type arm of the master robot, thus the
value of human force Fop is presumed from the input torque
(Fop = J−T

m τm).

The experiment results of Case 1 are shown in Figs. 4-6.
The Fig. 4 shows time responses of end-effector position of
slave of the Shape-System, Fig. 5 shows the time responses
of end-effector of the master of the Locked-System. In the
Fig. 4, we can conclude that the relative position between
slaves following a target trajectory with grasping object is
achieved. And in the Fig. 5, we also conclude that the
grasping object at the center position of slaves is able to
transported following the end-effector of the master. The
object is presumed to mix with closed links of slaves. When
grasping, the distance between slaves is narrowed. However,
this distance narrowed by each slave robot is different when
the object is held deflection. The force of the Shape-System
and the Locked-System in this case are shown in Fig. 6.
We can see that the Fig. 6 (b) shows the force data when
the object is transferred without contact with the remote
environment.

The experiment results of Case 2 are shown in Figs. 8-9.
The object comes and contacts with the remote environment
following vertical Y axis as shown in Fig. 7. Fig. 8 shows
the time responses of end-effector position of the Locked-
System with the master, the Fig. 9 shows the time responses
of reflection force from environment. In the Fig. 9, the
grasping object comes and contacts with environment in case
of the master and the slave are stationary states. Moreover,
the reflecting force is transmitted in scale environment with
Fop =−βFL (β = 1/10).

VI. CONCLUSIONS

In this paper, we proposed the control method that guar-
antee the asymptotical stability to the SMMS system with
time varying delay in the communication lines. The proposal
control law shows that the system became an asymptotically
stable for the communication of time varying delay by
using PD control and apply to Passive-Decomposition. This
method resolves the dynamics of multiple slaves system
such as the Shape-System dynamic and the Locked-System
dynamic of the control law. Moreover, the proposal control
law can be used to achieve an autonomous grasping object
by multiple slave and the transportation of the object by
the control experiment. In this work, the slaves are possible
to hold even if unknown object or the width extendable
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of object if it can be held by the force control. The force
information on the grasping object is necessary for the
position control law to keep the object to be held.

Finally, several experiment results show the effectiveness
of our proposal control method.
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