時変の通信遅延を有する非線形テレオペレーションのバイラテラル制御 河 田 久之輔*・滑 川 徹*

Bilateral Control of Nonlinear Teleoperation with Time Varying Delays

Hisanosuke KAWADA^{*} and Toru NAMERIKAWA^{*}

This paper addresses the bilateral control of nonlinear teleoperation with time varying delays. The proposed control strategies are two types of simple PD-type controllers which directly connect the master and slave robots by position and velocity signals over the delayed communication. For the velocity control, the first controller has a time varying D-gains which depend on the rate of change of delays and the second one has a constant D-gains which are designed under stability condition. Moreover the both controllers have explicit position feedback/feedforward control. Using Lyapunov-Krasovskii function, the delay-depend stability of the origin is shown for the range of the gains. Furthermore the proposed framework enforces master-slave position coordination and static force reflection. Several simulation and experimental results show the effectiveness of our proposed framework.

Key Words: nonlinear teleoperation with time varying delays, bilateral PD control, Lyapunov-Krasovskii function, master-slave position coordination, static force reflection

1. はじめに

テレオペレーションとは, 遠隔環境に対して人間の操作能 力や感覚を拡張するロボットシステムのことであり,制御工学 やロボット工学の分野を中心として精力的に研究されている. このシステムを用いて正確な遠隔作業を行なうためには,操縦 者に対して遠隔地の情報が必要不可欠である.特に,遠隔環境 と接触したときの力情報を操縦者に伝達するバイラテラル制 御を行なうことは,操縦者が直接作業しているような感覚を得 ることができ,作業能力を向上させることができる^{1),2)}.こ れらバイラテラルテレオペレーションは従来,原子力,宇宙, 危険物処理といった特殊環境での作業に応用されてきた¹⁾. 一方,近年のデジタル情報通信技術の生活への浸透を背景に, インターネットなどの既存の通信網を利用したバイラテラル テレオペレーションの研究が精力的に行なわれている^{2)~14)}. インターネットを用いることで安価に広範囲の通信路網を利 用できるという利点があり, 遠隔メンテナンスや遠隔介護な どより汎用的な分野でのバイラテラルテレオペレーションの 応用が期待されている.

バイラテラルテレオペレーションにおける制御理論の観点 からの問題点は,ロボット間の通信路に存在する遅延により システム全体が不安定化することである.さらに,インター

* 金沢大学大学院自然科学研究科 金沢市角間町

ネットなどの安価な通信路の場合には,輻輳や帯域幅の制限 により通信遅延が時間によって変化する.したがって定数の 遅延に対する安定性を保証するだけでなく,時変の通信遅延 に対する安定性も保証した制御系を構成する必要がある²⁾.

定数の通信遅延を有するバイラテラルテレオペレーション の安定化は,受動性に基づくスキャッタリング変換を用いた 手法がよく知られている¹⁵⁾. さらに,文献15)の位置誤差の 収束と力の伝達を向上するため,明確な位置のフィードフォ ワード/フィードバック制御を追加した制御法^{16),17)}やスモー ルゲイン定理に基づくウェーブフィルタを用いた位置--力帰還 型の制御法¹⁸⁾が提案されている.一方,文献19)~21)では, スキャッタリング変換を用いないで定数の通信遅延に対して 安定性を保証した PD 型制御則が提案されており,明確な位 置制御を有していることから良好な位置誤差の収束と力の伝 達が達成できている.しかしこれら^{15)~21)}は,時変の通信遅 延を扱っていない.一方,時変の通信遅延を考慮した結果も いくつか報告されており,スキャッタリング変換に基づく手 法としては文献 6)~8) がある.しかしながら,これらは位置 誤差の収束と力の伝達を保証しておらず, ロボットのダイナ ミクスが線形システムとして扱われている.一方,スキャッ タリング変換を用いない手法^{9)~12)}も提案されているが,線 形システムのみを扱っていたり,操縦者,遠隔環境,ロボッ トのモデルが制御則に必要であるためモデルパラメータの不 確かさに対するロバスト安定性が不十分である.また,安定 性だけしか理論的に示されておらず,位置誤差の収束と力の 伝達に関して議論されていない.さらに制御性能を向上する ために予測器を用いた手法^{13),14)}が提案されているが,遅延

 ^{*} Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa (Received March 18, 2008)
 (Revised December 5, 2008)

⁽Revised December 5, 2008)

の大きさが往路と復路で同じで,一方向の遅延の値を正確に 測定できるという仮定が必要であり,現実的ではない.

本稿では,時変の通信遅延を有する非線形テレオペレーショ ンに対して,安定性を保証した2種類の新しい制御手法を提 案する.提案する制御則は,往路と復路で異なる遅延を有す る通信路を介した位置と速度信号によって,マスタとスレー ブが直接結合される PD 型制御則である.最初に提案する制 御則では、速度制御ゲインが遅延の変化に応じて適切に変わ る時変ゲインを有しており,それにより遅延の変化に対して 安定性を保証する.一方,2番目に提案する制御則では定数の 速度制御ゲインを用いており,遅延の最大変化率に依存した 安定条件を満足するように設計される.また,提案する制御 則はどちらも明確な位置制御器を有しており,さらに予測器 などを有していないことから遅延の正確な値を知る必要はな い. Lyapunov-Krasovskii 関数を用いた安定性解析を行なう ことで,システムが漸近安定となるための(遅延に依存した) ゲイン条件を導出する.また,安定性が遠隔環境や操縦者, ロボットのモデルに依存しないことから,モデルパラメータ の不確かさに対してロバスト安定となる.さらに,マスタと スレーブの位置誤差が零に収束することと,スレーブの静的 な接触力が操縦者に伝達されることを示す.最後に,シミュ レーションによる収束性の検証と2つの制御則の性能の比較 を行ない,制御実験により提案法の有効性を実証する.

2. 問題設定

ここでは Fig.1 のような 2 つの非線形多自由度ロボット が時変の通信遅延を有する通信路を介して制御される問題を 扱う.

2.1 テレオペレーションのダイナミクス

1

マスタおよびスレーブは, n 自由度の非線形マニピュレー タとして,次式で記述されるダイナミクスで与えられる²²⁾.

$$\begin{cases} \boldsymbol{M}_{\boldsymbol{m}}(q_m) \boldsymbol{\ddot{q}}_{\boldsymbol{m}}(t) + \boldsymbol{C}_{\boldsymbol{m}}(q_m, \dot{q}_m) \boldsymbol{\dot{q}}_{\boldsymbol{m}}(t) = \boldsymbol{\tau}_{\boldsymbol{m}}(t) + \boldsymbol{F}_{\boldsymbol{op}}(t) \\ \mathbf{M}_{\boldsymbol{s}}(q_s) \boldsymbol{\ddot{q}}_{\boldsymbol{s}}(t) + \boldsymbol{C}_{\boldsymbol{s}}(q_s, \dot{q}_s) \boldsymbol{\dot{q}}_{\boldsymbol{s}}(t) = \boldsymbol{\tau}_{\boldsymbol{s}}(t) - \boldsymbol{F}_{\boldsymbol{env}}(t) \end{cases}$$

ここで,添え字 m はマスタ,s はスレープを表わしており, $q_m, q_s \in R^n$ は関節角度ベクトル, $\tau_m, \tau_s \in R^n$ は入力トル クベクトル, $F_{op} \in R^n$ は操縦者からのトルク, $F_{env} \in R^n$ は環境からの反力トルク, $M_m(q_m), M_s(q_s) \in R^{n \times n}$ は慣 性行列, $C_m(q_m, \dot{q}_m)\dot{q}_m, C_s(q_s, \dot{q}_s)\dot{q}_s \in R^n$ はコリオリカ および遠心カベクトルである.本稿では,簡単化のために重 力項や摩擦などを無視している.もしこれらが存在する場合

Fig. 1 Teleoperation system

には,ローカルに補償を行なうことで(1)式を得ることがで きる.さらに,ダイナミクス(1)はつぎの特性を有している ことが知られている.

[特性 1] 慣性行列 M(q) は正定対称で,有界な行列である. [特性 2] $\dot{M}(q) - 2C(q, \dot{q})$ が歪対称行列になる.

操縦者と環境に対しては,文献 21) と同様につぎのように 仮定する.

[仮定1] 操縦者は,マスタに対して一定の力を供給する非 受動的なシステムである.また,遠隔環境は,任意の線形な パネーダンパシステムでモデル化される受動的なシステムで ある.

上述の仮定のもとで,操縦者を次式のような定数入力とする.

$$\boldsymbol{F_{op}}(t) = \bar{\boldsymbol{F}_{op}} \tag{2}$$

ここで, $\bar{F}_{op} \in \mathbb{R}^n$ は任意の有限な定数ベクトルである.つぎに,遠隔環境を次式のような線形システムとする.

$$F_{env}(t) = B_e \dot{q}_s(t) + K_e q_s(t)$$
(3)

ここで, $B_e, K_e \in \mathbb{R}^{n imes n}$ は,任意の準正定行列である.

通信路の時変の遅延は,マスタ-スレーブ間を $T_m(t)$ の関数とし,スレーブ-マスタ間を $T_s(t)$ の関数として,それぞれつぎの仮定を満足する.

[仮定2] 通信遅延 $T_m(t)$, $T_s(t)$ は時間に関して微分可能な 連続関数であり次式を満足する.

$$0 \le T_i(t) \le T_i^+ < \infty, \ |\dot{T}_i(t)| < 1, \ i = m, s$$
 (4)

ここで , $T_i^+ \in R$ は遅延の最大値で定数 , $\dot{T}_i(t) \in R$ は遅延の変 化率である.また ,通信路の最大往復遅延を $T_{ms}^+ := T_m^+ + T_s^+$ とし , この値は既知である.

さらに,後述の安定性解析のために以下を仮定する.

[仮定3] t < 0において $\dot{q}_m(t) = \dot{q}_s(t) = 0$ である.

2.2 制御目的

テレオペレーションに求められる最も基本的な要求は,通 信遅延やさまざまな操縦者および遠隔環境に対して,システ ム全体が安定となることである.さらに,正確な作業を行な うためには,操縦者が遠隔環境との接触を直接的に感じる必 要がある.これはシステムの透明性と呼ばれ,テレオペレー ションの重要な性能指標である.システムが理想的な透明性 を達成するためには,マスタとスレーブの位置と力の応答が 扱う対象物によらずに常に一致する必要がある^{23)~25)}.しか し,遅延を有するシステムでは,理想的な透明性を厳密に達 成することは困難である.そこで,本稿では安定性と透明性 に関して文献 20) と等価なつぎのような制御目的を考える. [制御目的1]安定性) Fig.1の時変の通信遅延を有する非 線形テレオペレーションシステムは,操縦者からの入力(2) と遠隔環境(3)のパラメータとは独立に(漸近)安定である. 「制御目的2(静的な力の伝達) 遠隔環境からの反力が操縦 者に次式のように正確に伝達される.

$$\boldsymbol{F_{op}}(t) = \boldsymbol{F_{env}}(t) \quad as \ t \to \infty \tag{5}$$

[制御目的 3] マスタとスレーブの位置協調) 位置協調誤差 *q_E* を次式のように定義する.

$$\boldsymbol{q}_{\boldsymbol{E}}(t) := \boldsymbol{q}_{\boldsymbol{m}}(t) - \boldsymbol{q}_{\boldsymbol{s}}(t) \tag{6}$$

 $F_{op} = F_{env} = 0$ において位置協調誤差 (6) が次式のように 零となり、マスタとスレーブの位置が協調する.

$$q_E(t) \to 0 \quad as \quad t \to \infty$$
 (7)

3. 制御系設計

前節の制御目的を達成するために,本稿では2種類の制御 則を提案する.1番目の制御則は時変ゲインを用いた PD型 制御則であり,2番目の制御則は時変ゲインを用いない PD 型制御則である.

3.1 制御則 1: 時変ゲインを用いた PD 型制御則

ここでは,次式のような時変ゲインを用いた PD 型制御則 を提案する.

$$\begin{cases} \boldsymbol{\tau}_{m}(t) = \boldsymbol{K}_{md}(t) \left\{ \dot{\boldsymbol{q}}_{s}(t - T_{s}(t)) - \dot{\boldsymbol{q}}_{m}(t) \right\} \\ &- \left\{ \boldsymbol{D}_{md}(t) + \boldsymbol{D}_{p} \right\} \dot{\boldsymbol{q}}_{m}(t) \\ &+ \boldsymbol{K}_{p} \left\{ \boldsymbol{q}_{s}(t - T_{s}(t)) - \boldsymbol{q}_{m}(t) \right\} \\ &+ \boldsymbol{K}_{p} \left\{ \boldsymbol{q}_{s}(t - T_{m}(t)) - \dot{\boldsymbol{q}}_{s}(t) \right\} \\ &- \left\{ \boldsymbol{D}_{sd}(t) + \boldsymbol{D}_{p} \right\} \dot{\boldsymbol{q}}_{s}(t) \\ &+ \boldsymbol{K}_{p} \left\{ \boldsymbol{q}_{m}(t - T_{m}(t)) - \boldsymbol{q}_{s}(t) \right\} \end{cases}$$
(8)

ここで, $K_{md}(t)$, $K_{sd}(t)$, $D_{md}(t)$, $D_{sd}(t)$ は,通信遅延 の変化率 $\dot{T}_i(t)$ に依存した時変ゲインで次式のように定める.

$$\begin{cases} \boldsymbol{K_{md}}(t) = (1 - \dot{T}_s(t))\boldsymbol{K_d} \\ \boldsymbol{K_{sd}}(t) = (1 - \dot{T}_m(t))\boldsymbol{K_d}, \end{cases} \begin{cases} \boldsymbol{D_{md}}(t) = \frac{\dot{T}_s(t)}{2}\boldsymbol{K_d} \\ \boldsymbol{D_{sd}}(t) = \frac{\dot{T}_m(t)}{2}\boldsymbol{K_d} \end{cases}$$
(9)

ただし, $K_d, D_p, K_p \in R^{n imes n}$ は正定対角行列である.

提案する制御則 1 は,位置制御ゲイン K_p と速度制御ゲイ ン $K_{md}(t)$, $K_{sd}(t)$ をもつ単純な PD 型の制御構造である. 従来の定数遅延に対する PD 型制御則²⁰⁾との違いは,速度 制御ゲイン $K_{md}(t)$, $K_{sd}(t)$ が遅延の変化率に依存した時 変ゲインとなっており,さらに時変ゲイン $D_{md}(t)$, $D_{sd}(t)$ を追加していることである.このように遅延の変化率に依存 した時変ゲインを用いて,時変の通信遅延に対する補償を行 なう方法は文献 8)でも行なわれているが,提案する制御則は 遅延が正の方向に変化する場合に速度制御ゲイン $K_{md}(t)$, $K_{sd}(t)$ を小さくし,ゲイン $D_{md}(t)$, $D_{sd}(t)$ によりシステ ムのエネルギーを消散させることでシステムを安定化させる という特徴がある.また,明確な位置制御によってマスタと スレープの位置協調を行なっている.

操縦者 (2) および遠隔環境 (3) より,マスタの位置の平衡 点 $\bar{q}_m \in R^n$ とスレープの位置の平衡点 $\bar{q}_s \in R^n$ は,次式を 満足する任意の定数として定義することができる.

$$\begin{cases} \bar{F}_{op} = K_p(\bar{q}_m - \bar{q}_s) \\ 0 = K_e \bar{q}_s - K_p(\bar{q}_m - \bar{q}_s) \end{cases}$$
(10)

また,速度に対する平衡点はそれぞれ, $\dot{q}_m = \dot{q}_s = 0$ となる ことは明らかである.したがって,上述の平衡点が原点とな るような新しい位置の変数を

$$\begin{cases} \tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t) = \boldsymbol{q}_{\boldsymbol{m}}(t) - \bar{\boldsymbol{q}}_{\boldsymbol{m}} \\ \tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t) = \boldsymbol{q}_{\boldsymbol{s}}(t) - \bar{\boldsymbol{q}}_{\boldsymbol{s}} \end{cases}$$
(11)

と定義することで,ダイナミクス (1) および (2),(3),(8), (10) 式から,次式の閉ループシステムを得ることができる.

$$\begin{cases} M_{m}\ddot{q}_{m} + C_{m}\dot{q}_{m} = K_{md}(t) \left\{ \dot{q}_{s}(t - T_{s}(t)) - \dot{q}_{m} \right\} \\ - \left\{ D_{md}(t) + D_{p} \right\} \dot{q}_{m} + K_{p} \left\{ \tilde{q}_{s}(t - T_{s}(t)) - \tilde{q}_{m} \right\} \\ M_{s}\ddot{q}_{s} + C_{s}\dot{q}_{s} = K_{sd}(t) \left\{ \dot{q}_{m}(t - T_{m}(t)) - \dot{q}_{s} \right\} & (12) \\ - \left\{ D_{sd}(t) + D_{p} \right\} \dot{q}_{s} + K_{p} \left\{ \tilde{q}_{m}(t - T_{m}(t)) - \tilde{q}_{s} \right\} \\ - B_{e}\dot{q}_{s} - K_{e}\tilde{q}_{s} \end{cases}$$

上述の閉ループシステム (12) に対してつぎの定理が成り立ち,制御目的1を満足する.

《定理 1》 仮定 1~3 を満足し T_i が測定可能なテレオペレー ションシステム (12) を考える.このとき,ゲイン K_p が条件

$$K_p < \frac{2}{T_{ms}^+} D_p \tag{13}$$

を満たすならば,システムの原点 $\dot{q}_m = \dot{q}_s = \tilde{q}_m = \tilde{q}_s = 0$ は漸近安定で, $\lim_{t\to\infty} q_m = \bar{q}_m$, $\lim_{t\to\infty} q_s = \bar{q}_s$ となる. (証明) 状態ベクトル $x(t) = [\dot{q}_m^T \dot{q}_s^T (\tilde{q}_m - \tilde{q}_s)^T \tilde{q}_s^T]^T$ を用 いて,システムの正定な汎関数 (Lyapunov-Krasovskii 関数) をつぎのように定義する.

$$V_{1}(x(t)) = \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(t)\boldsymbol{M}_{\boldsymbol{m}}(q_{\boldsymbol{m}})\dot{\boldsymbol{q}}_{\boldsymbol{m}}(t) + \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(t)\boldsymbol{M}_{\boldsymbol{s}}(q_{\boldsymbol{s}})\dot{\boldsymbol{q}}_{\boldsymbol{s}}(t) +\{\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t)\}^{T}\boldsymbol{K}_{\boldsymbol{p}}\{\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t)\} + \tilde{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(t)\boldsymbol{K}_{\boldsymbol{e}}\tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t) +\int_{t-T_{\boldsymbol{m}}(t)}^{t} \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(\xi)\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{m}}(\xi)d\xi + \int_{t-T_{\boldsymbol{s}}(t)}^{t} \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(\xi)\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{s}}(\xi)d\xi \text{ (14)}$$

システム (12) の解軌道に沿って V1 を時間微分し,特性2を 用いて整理すると次式が得られる.

$$\dot{V}_{1} = 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t)\dot{\boldsymbol{q}}_{\boldsymbol{s}}(t-T_{\boldsymbol{s}}(t)) - 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t)\dot{\boldsymbol{q}}_{\boldsymbol{m}} + \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{m}} - 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{D}_{\boldsymbol{m}\boldsymbol{d}}(t)\dot{\boldsymbol{q}}_{\boldsymbol{m}} - (1-\dot{T}_{s}(t))\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(t-T_{s}(t))\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{s}}(t-T_{s}(t)) + 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t)\dot{\boldsymbol{q}}_{\boldsymbol{m}}(t-T_{\boldsymbol{m}}(t)) - 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t)\dot{\boldsymbol{q}}_{\boldsymbol{s}} + \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{s}} - 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{D}_{\boldsymbol{s}\boldsymbol{d}}(t)\dot{\boldsymbol{q}}_{\boldsymbol{s}} - (1-\dot{T}_{\boldsymbol{m}}(t))\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(t-T_{\boldsymbol{m}}(t))\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{m}}(t-T_{\boldsymbol{m}}(t)) - 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{D}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{\boldsymbol{m}} + 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{p}}(\tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t-T_{s}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}}) - 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{D}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{\boldsymbol{s}} + 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{K}_{\boldsymbol{p}}(\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t-T_{\boldsymbol{m}}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{m}}) - 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{B}_{\boldsymbol{e}}\dot{\boldsymbol{q}}_{\boldsymbol{s}}$$
(15)

(9)式の $D_{md}(t)$, $D_{sd}(t)$ を代入し, $K_{md}(t)$, $K_{sd}(t)$ で整

理すると,

$$\dot{V}_{1} = - \left\{ \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t) \dot{\boldsymbol{q}}_{\boldsymbol{m}} - 2 \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t) \dot{\boldsymbol{q}}_{\boldsymbol{s}}(t - T_{s}(t)) \right. \\ \left. + \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(t - T_{s}(t)) \boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t) \dot{\boldsymbol{q}}_{\boldsymbol{s}}(t - T_{s}(t)) \right\} \\ \left. - \left\{ \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t) \dot{\boldsymbol{q}}_{\boldsymbol{s}} - 2 \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t) \dot{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{m}(t)) \right. \\ \left. + \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(t - T_{m}(t)) \boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t) \dot{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{m}(t)) \right\} \\ \left. - 2 \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{D}_{\boldsymbol{p}} \dot{\boldsymbol{q}}_{\boldsymbol{m}} + 2 \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{K}_{\boldsymbol{p}} (\tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t - T_{s}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}}) \right. \\ \left. - 2 \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{D}_{\boldsymbol{p}} \dot{\boldsymbol{q}}_{\boldsymbol{s}} + 2 \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{p}} (\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{m}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{m}}) \right. \\ \left. - 2 \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{D}_{\boldsymbol{p}} \dot{\boldsymbol{q}}_{\boldsymbol{s}} + 2 \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{p}} (\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{m}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{m}}) \right. \\ \left. - 2 \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{B}_{\boldsymbol{s}} \dot{\boldsymbol{q}}_{\boldsymbol{s}} \right\}$$
(16)

を得る、上式の1,2項目に対して平方完成を行ない, $\dot{e}_m := \dot{q}_s(t - T_s(t)) - \dot{q}_m$, $\dot{e}_s := \dot{q}_m(t - T_m(t)) - \dot{q}_s$ で整理することで

$$\dot{V}_{1} = -\dot{\boldsymbol{e}}_{\boldsymbol{m}}^{T} \boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t) \dot{\boldsymbol{e}}_{\boldsymbol{m}} - \dot{\boldsymbol{e}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t) \dot{\boldsymbol{e}}_{\boldsymbol{s}} - 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{B}_{\boldsymbol{e}} \dot{\boldsymbol{q}}_{\boldsymbol{s}}$$
$$-2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{D}_{\boldsymbol{p}} \dot{\boldsymbol{q}}_{\boldsymbol{m}} + 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{K}_{\boldsymbol{p}} (\tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t - T_{\boldsymbol{s}}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}})$$
$$-2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{D}_{\boldsymbol{p}} \dot{\boldsymbol{q}}_{\boldsymbol{s}} + 2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{p}} (\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{\boldsymbol{m}}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{m}}) \quad (17)$$

を得る. つぎの Leibniz-Newton の公式

を
$$(10)$$
 式に代入し,両辺を区間 $[0, t_f]$ で積分すると,

$$\int_{0}^{t_{f}} \dot{V}_{1} dt = -\int_{0}^{t_{f}} \dot{\boldsymbol{e}}_{\boldsymbol{m}}^{T} \boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t) \dot{\boldsymbol{e}}_{\boldsymbol{m}} dt - \int_{0}^{t_{f}} \dot{\boldsymbol{e}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t) \dot{\boldsymbol{e}}_{\boldsymbol{s}} dt$$
$$-2 \int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{B}_{\boldsymbol{e}} \dot{\boldsymbol{q}}_{\boldsymbol{s}} dt$$
$$-2 \int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{D}_{\boldsymbol{p}} \dot{\boldsymbol{q}}_{\boldsymbol{m}} dt - 2 \int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{D}_{\boldsymbol{p}} \dot{\boldsymbol{q}}_{\boldsymbol{s}} dt$$
$$-2 \int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T} \boldsymbol{K}_{\boldsymbol{p}} \int_{0}^{T_{s}(t)} \dot{\boldsymbol{q}}_{\boldsymbol{s}}(t-\xi) d\xi dt$$
$$-2 \int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T} \boldsymbol{K}_{\boldsymbol{p}} \int_{0}^{T_{m}(t)} \dot{\boldsymbol{q}}_{\boldsymbol{m}}(t-\xi) d\xi dt (19)$$

を得る.(19)式の右辺 6 項目に注目すると, *K_p* は対角行列 なので次式のように書き換えることが出来る.

$$-2\int_{0}^{t_{f}} \{\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(t)\boldsymbol{K}_{\boldsymbol{p}}\int_{0}^{T_{s}(t)} \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(t-\xi)d\xi\}dt$$
$$=\sum_{j=1}^{n}K_{pj}-2\int_{0}^{t_{f}} \{\dot{q}_{mj}\int_{0}^{T_{s}(t)} \dot{q}_{sj}(t-\xi)d\xi\}dt \quad (20)$$

ここで, \dot{q}_{mj} , \dot{q}_{sj} , K_{pj} はマスタおよびスレーブのj軸目の 角速度と対応する位置制御ゲインである. (20)式の下線部に 注目すると, $-2ab \leq a^2 + b^2$, $a, b \in R$ とシュワルツの不等 式を用いることで次式のように書き換えることが出来る.

$$-2\int_{0}^{t_{f}} \{\dot{q}_{mj}\int_{0}^{T_{s}(t)} \dot{q}_{sj}(t-\xi)d\xi\}dt$$

$$\leq T_{s}^{+}\int_{0}^{t_{f}} \dot{q}_{mj}^{2}dt + \frac{1}{T_{s}^{+}}\int_{0}^{t_{f}} \{\int_{0}^{T_{s}(t)} \dot{q}_{sj}(t-\xi)d\xi\}^{2}dt$$

$$\leq T_{s}^{+}\int_{0}^{t_{f}} \dot{q}_{mj}^{2}dt + \frac{1}{T_{s}^{+}}\int_{0}^{t_{f}} T_{s}(t)\int_{0}^{T_{s}(t)} \dot{q}_{sj}^{2}(t-\xi)d\xi dt (21)$$

仮定 2の $T_s(t) \leq T_s^+$ と仮定 3を用いることで次式を得る.

$$-2\int_{0}^{t_{f}} \{\dot{q}_{mj}\int_{0}^{T_{s}(t)} \dot{q}_{sj}(t-\xi)d\xi\}dt$$

$$\leq T_{s}^{+}\int_{0}^{t_{f}} \dot{q}_{mj}^{2}dt + \int_{0}^{T_{s}^{+}}\int_{0}^{t_{f}-\xi} \dot{q}_{sj}^{2}dtd\xi$$

$$\leq T_{s}^{+}\int_{0}^{t_{f}} \dot{q}_{mj}^{2}dt + \int_{0}^{T_{s}^{+}}\int_{0}^{t_{f}} \dot{q}_{sj}^{2}dtd\xi$$

$$= T_{s}^{+}\int_{0}^{t_{f}} \dot{q}_{mj}^{2}dt + T_{s}^{+}\int_{0}^{t_{f}} \dot{q}_{sj}^{2}dt \qquad (22)$$

以上より, (19) 式の右辺 6,7 項目は,次式のように書き換えることが出来る.

$$-2\int_{0}^{t_{f}} \{\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{p}}\int_{0}^{T_{s}(t)} \dot{\boldsymbol{q}}_{s}(t-\xi)d\xi\}dt$$

$$\leq T_{s}^{+}\int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{m}dt + T_{s}^{+}\int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{K}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{s}dt$$

$$(23)$$

$$-2\int_{0}^{t_{f}} \{\dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{K}_{\boldsymbol{p}}\int_{0}^{T_{m}(t)} \dot{\boldsymbol{q}}_{m}(t-\xi)d\xi\}dt$$

$$\leq T_{m}^{+}\int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{K}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{s}dt + T_{m}^{+}\int_{0}^{t_{f}} \dot{\boldsymbol{q}}_{m}^{T}\boldsymbol{K}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{m}dt$$

$$(24)$$

以上より,(23),(24)式を(19)式に代入することで次式を 得る.

$$\int_{0}^{t_{f}} \dot{V}_{1}(x) dt \leq -\lambda_{m}(\boldsymbol{K_{md}}(t)) ||\dot{\boldsymbol{e}}_{m}||_{2}^{2} - \lambda_{m}(\boldsymbol{K_{sd}}(t))||\dot{\boldsymbol{e}}_{s}||_{2}^{2} \\ -\lambda_{m}(2\boldsymbol{B}_{\boldsymbol{e}})||\dot{\boldsymbol{q}}_{s}||_{2}^{2} \\ -\lambda_{m}(2\boldsymbol{D}_{\boldsymbol{p}} - T_{ms}^{+}\boldsymbol{K}_{\boldsymbol{p}})||\dot{\boldsymbol{q}}_{m}||_{2}^{2} \\ -\lambda_{m}(2\boldsymbol{D}_{\boldsymbol{p}} - T_{ms}^{+}\boldsymbol{K}_{\boldsymbol{p}})||\dot{\boldsymbol{q}}_{s}||_{2}^{2}$$
(25)

ここで, $\lambda_m(A)$ はAの最小固有値,||*||₂は,区間[0, t_f]上での信号の \mathcal{L}_2 ノルムを表わしている.仮定2より,1- $\dot{T}_i(t) > 0$, i = m, sなので,(9)式の $K_{md}(t)$, $K_{sd}(t)$ は, $\dot{T}_i(t)$ とは独立に正定である.したがって,不等式(13)を満足するように K_p , D_p を選択することで(25)式は準負定となる.以上より, $\dot{q}_m, \dot{q}_s, \tilde{q}_m, \tilde{q}_s \in \mathcal{L}_\infty$ であることは明らかである.さらに, $t_f \to \infty$ とすることで $\dot{q}_m, \dot{q}_s, \dot{e}_m, \dot{e}_s \in \mathcal{L}_2$ となる.

閉ループシステム (12) より,特性 1 を用いることで $\ddot{q}_m, \ddot{q}_s \in \mathcal{L}_\infty$ を得ることが出来る.したがって,文献 26) の補題を用いることで $\lim_{t\to\infty} \dot{e}_m = \lim_{t\to\infty} \dot{e}_s =$ $\lim_{t\to\infty} \dot{q}_m = \lim_{t\to\infty} \dot{q}_s = 0$ となる.さらに, $\ddot{q}_m, \ddot{q}_s \in$ \mathcal{L}_∞ となることは簡単に示すことが出来る²⁰⁾.これは \ddot{q}_m , \ddot{q}_s が一様連続となることを意味している.また,先ほど示した とおり $\lim_{t\to\infty} \dot{q}_m = \lim_{t\to\infty} \dot{q}_s = 0$ となるので,Barbalat の補題²⁷⁾を用いることで $\lim_{t\to\infty} \ddot{q}_m = \lim_{t\to\infty} \ddot{q}_s = 0$ と なる.以上より,閉ループシステム(12) はつぎのようになる.

$$\begin{cases} \lim_{t \to \infty} ||\tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t - T_{\boldsymbol{s}}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{m}}|| = 0 \\ \lim_{t \to \infty} ||\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{\boldsymbol{m}}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}}|| = \boldsymbol{K}_{\boldsymbol{p}}^{-1} \boldsymbol{K}_{\boldsymbol{e}} \lim_{t \to \infty} \tilde{\boldsymbol{q}}_{\boldsymbol{s}} \end{cases} \end{cases}$$

1

上式に Leibniz-Newton の公式 (18) と $\lim_{t\to\infty} \dot{q}_m = \lim_{t\to\infty} \dot{q}_s = 0$ を用いることで,

$$\begin{cases} \lim_{t \to \infty} ||\tilde{q}_s - \tilde{q}_m|| = 0 \\ \lim_{t \to \infty} ||\tilde{q}_m - \tilde{q}_s|| = K_p^{-1} K_e \tilde{q}_s \end{cases}$$
(27)

となることから、 $\lim_{t\to\infty} \tilde{q}_m = \lim_{t\to\infty} \tilde{q}_s = 0$ を結論 づけることができる、以上より、システムの原点 $\dot{q}_m = \dot{q}_s = \tilde{q}_m = \tilde{q}_s = 0$ は漸近安定で、 $\lim_{t\to\infty} q_m(t) = \bar{q}_m$ 、 $\lim_{t\to\infty} q_s(t) = \bar{q}_s$ となる、

さらに,上述の定理からつぎの2つの系を導くことができ, 制御目的2と制御目的3を満足する.

[系1] 定理1を満足するテレオペレーションシステム(12) を考える.このとき,次式のように静的な力の伝達が達成される.

$$F_{op} = K_p(\bar{q}_m - \bar{q}_s) = K_e \bar{q}_s = F_{env}$$
(28)

(証明) 定理 1 より, $\lim_{t\to\infty} \dot{q}_m = \lim_{t\to\infty} \dot{q}_s = 0$, $\lim_{t\to\infty} q_m = \bar{q}_m$, $\lim_{t\to\infty} q_s = \bar{q}_s$ が成立することから, 操縦者の力 (2) と遠隔環境からの反力 (3) をつぎのように書 き換えることができる.

$$\begin{cases} F_{op} = K_p(\bar{q}_m - \bar{q}_s) = K_e \bar{q}_s \\ F_{env} = K_e \bar{q}_s = K_p(\bar{q}_m - \bar{q}_s) \end{cases}$$
(29)

上式は,(28)式のように簡単に書き換えることができる.□

[系 2] 定理 1 を満足するテレオペレーションシステム (12) を考える.このとき, $F_{op} = F_{env} = 0$ ならば (6) 式の位置 誤差 q_E は零になる.

(証明) 定理 1 において $F_{op} = F_{env} = 0$ を仮定すると,(28) は $\bar{q}_m - \bar{q}_s = 0$ となる.これは,マスタおよびスレープの平衡点が 同じであることを意味する.以上より,マスタおよびスレープ の位置誤差は $\lim_{t\to\infty} q_E(t) = \lim_{t\to\infty} (q_m(t) - q_s(t)) = 0$ となる.

3.2 制御則 2: 時変ゲインを用いない PD 型制御則

ここでは,次式のような時変ゲインを用いない PD 型制御 則を提案する.

$$\begin{cases} \boldsymbol{\tau}_{m}(t) = \boldsymbol{K}_{d} \left\{ \dot{\boldsymbol{q}}_{s}(t - T_{s}(t)) - \dot{\boldsymbol{q}}_{m}(t) \right\} \\ - \left\{ \boldsymbol{D}_{d} + \boldsymbol{D}_{p} \right\} \dot{\boldsymbol{q}}_{m}(t) \\ + \boldsymbol{K}_{p} \left\{ \boldsymbol{q}_{s}(t - T_{s}(t)) - \boldsymbol{q}_{m}(t) \right\} \\ \tau_{s}(t) = \boldsymbol{K}_{d} \left\{ \dot{\boldsymbol{q}}_{m}(t - T_{m}(t)) - \dot{\boldsymbol{q}}_{s}(t) \right\} \\ - \left\{ \boldsymbol{D}_{d} + \boldsymbol{D}_{p} \right\} \dot{\boldsymbol{q}}_{s}(t) \\ + \boldsymbol{K}_{p} \left\{ \boldsymbol{q}_{m}(t - T_{m}(t)) - \boldsymbol{q}_{s}(t) \right\} \end{cases}$$
(30)

ここで, $K_d, K_p, D_d, D_p, \in \mathbb{R}^{n \times n}$ は正定対角行列である. 制御則 1 との違いは,速度制御ゲイン K_d とゲイン D_d が定 数行列を用いていることである.したがって,制御則 1 より も実装が容易である.

前節と同様に,ダイナミクス(1)に対して(2),(3),(10), (30)式を代入し,新しい位置変数(11)を用いて整理するこ とで,次式の閉ループシステムを得ることができる.

$$\begin{cases} M_{m}\ddot{q}_{m} + C_{m}\dot{q}_{m} = K_{d} \left\{ \dot{q}_{s}(t - T_{s}(t)) - \dot{q}_{m} \right\} \\ &- \left\{ D_{d} + D_{p} \right\} \dot{q}_{m} + K_{p} \left\{ \tilde{q}_{s}(t - T_{s}(t)) - \tilde{q}_{m} \right\} \\ M_{s}\ddot{q}_{s} + C_{s}\dot{q}_{s} = K_{d} \left\{ \dot{q}_{m}(t - T_{m}(t)) - \dot{q}_{s} \right\} & (31) \\ &- \left\{ D_{d} + D_{p} \right\} \dot{q}_{s} + K_{p} \left\{ \tilde{q}_{m}(t - T_{m}(t)) - \tilde{q}_{s} \right\} \\ &- B_{e}\dot{q}_{s} - K_{e}\tilde{q}_{s} \end{cases}$$

閉ループシステム (31) に対して,定理1と同様なつぎの定理2が成り立ち,制御目的1を満足する.

《定理 2》 仮定 1~3 を満足し, $|\dot{T}_i(t)| \leq T^* < 1, i = m, s$ を満足する遅延の最大変化率 T^* が既知なテレオペレーションシステム (31)を考える.このとき, ゲイン K_p , K_d が条件

$$K_{\mathbf{p}} < \frac{2}{T_{ms}^+} D_{\mathbf{p}} \tag{32}$$

$$K_d \leq \frac{2(1-T^*)}{T^*} D_d \tag{33}$$

を満足するならば、システムの原点 $\dot{q}_m = \dot{q}_s = \tilde{q}_m = \tilde{q}_s = 0$ は漸近安定で、 $\lim_{t\to\infty} q_m = \bar{q}_m$ 、 $\lim_{t\to\infty} q_s = \bar{q}_s$ となる. (証明)状態ベクトル $x(t) = [\dot{q}_m^T \ \dot{q}_s^T \ (\tilde{q}_m - \tilde{q}_s)^T \ \tilde{q}_s^T]^T$ を用 いて、システムの正定な汎関数(Lyapunov-Krasovskii 関数) を次式のように定義する.

$$V_{2}(\boldsymbol{x}(t)) = \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(t)\boldsymbol{M}_{\boldsymbol{m}}(\boldsymbol{q}_{\boldsymbol{m}})\dot{\boldsymbol{q}}_{\boldsymbol{m}}(t) + \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(t)\boldsymbol{M}_{\boldsymbol{s}}(\boldsymbol{q}_{\boldsymbol{s}})\dot{\boldsymbol{q}}_{\boldsymbol{s}}(t) + \{\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t)\}^{T}\boldsymbol{K}_{\boldsymbol{p}}\{\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t) - \tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t)\} + \tilde{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(t)\boldsymbol{K}_{\boldsymbol{e}}\tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t) + \frac{1}{1 - T^{*}}\int_{t - T_{\boldsymbol{m}}(t)}^{t} \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(\xi)\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{m}}(\xi)d\xi + \frac{1}{1 - T^{*}}\int_{t - T_{\boldsymbol{s}}(t)}^{t} \dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}(\xi)\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{s}}(\xi)d\xi \qquad (34)$$

システム (31)の解軌道に沿って V_2 を時間微分し,特性 2 と $-\frac{1-\dot{T}_i(t)}{1-T^*} \leq -1$ を用いて整理すると次式が得られる.

$$\dot{V}_{2} \leq -\{\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{m}} - 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{s}}(t - T_{s}(t)) + \dot{\boldsymbol{q}}_{s}^{T}(t - T_{s}(t))\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{s}}(t - T_{s}(t))\} \\ -\{\dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{s} - 2\dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{m}(t)) + \dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(t - T_{m}(t))\boldsymbol{K}_{\boldsymbol{d}}\dot{\boldsymbol{q}}_{\boldsymbol{m}}(t - T_{m}(t))\} \\ -\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}(2\boldsymbol{D}_{\boldsymbol{d}} - \frac{T^{*}}{1 - T^{*}}\boldsymbol{K}_{\boldsymbol{d}})\dot{\boldsymbol{q}}_{\boldsymbol{m}} - \dot{\boldsymbol{q}}_{s}^{T}(2\boldsymbol{D}_{\boldsymbol{d}} - \frac{T^{*}}{1 - T^{*}}\boldsymbol{K}_{\boldsymbol{d}})\dot{\boldsymbol{q}}_{\boldsymbol{s}} \\ -2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{D}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{\boldsymbol{m}} + 2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{p}}(\tilde{\boldsymbol{q}}_{s}(t - T_{s}(t)) - \tilde{\boldsymbol{q}}_{\boldsymbol{m}}) \\ -2\dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{D}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{s} + 2\dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{K}_{\boldsymbol{p}}(\tilde{\boldsymbol{q}}_{m}(t - T_{m}(t)) - \tilde{\boldsymbol{q}}_{s}) \\ -2\dot{\boldsymbol{q}}_{s}^{T}\boldsymbol{B}_{\boldsymbol{e}}\dot{\boldsymbol{q}}_{s} + 2(\dot{\boldsymbol{q}}_{\boldsymbol{m}} - \dot{\boldsymbol{q}}_{s})^{T}\boldsymbol{K}_{\boldsymbol{p}}(\tilde{\boldsymbol{q}}_{\boldsymbol{m}} - \tilde{\boldsymbol{q}}_{s}) \quad (35)$$

上式の 1 , 2 項目に対して平方完成を行ない \dot{e}_m , \dot{e}_s で置き 換えると ,

$$\begin{split} \dot{V}_2 &\leq -\dot{\boldsymbol{e}}_{\boldsymbol{m}}^T \boldsymbol{K}_{\boldsymbol{m}\boldsymbol{d}}(t) \dot{\boldsymbol{e}}_{\boldsymbol{m}} - \dot{\boldsymbol{e}}_{\boldsymbol{s}}^T \boldsymbol{K}_{\boldsymbol{s}\boldsymbol{d}}(t) \dot{\boldsymbol{e}}_{\boldsymbol{s}} - 2 \dot{\boldsymbol{q}}_{\boldsymbol{s}}^T \boldsymbol{B}_{\boldsymbol{e}} \dot{\boldsymbol{q}}_{\boldsymbol{s}} \\ &- \dot{\boldsymbol{q}}_{\boldsymbol{m}}^T (2\boldsymbol{D}_{\boldsymbol{d}} - \frac{T^*}{1 - T^*} \boldsymbol{K}_{\boldsymbol{d}}) \dot{\boldsymbol{q}}_{\boldsymbol{m}} - \dot{\boldsymbol{q}}_{\boldsymbol{s}}^T (2\boldsymbol{D}_{\boldsymbol{d}} - \frac{T^*}{1 - T^*} \boldsymbol{K}_{\boldsymbol{d}}) \dot{\boldsymbol{q}}_{\boldsymbol{s}} \end{split}$$

$$-2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{D}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{\boldsymbol{m}}+2\dot{\boldsymbol{q}}_{\boldsymbol{m}}^{T}\boldsymbol{K}_{\boldsymbol{p}}(\tilde{\boldsymbol{q}}_{\boldsymbol{s}}(t-T_{s}(t))-\tilde{\boldsymbol{q}}_{\boldsymbol{s}})$$
$$-2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{D}_{\boldsymbol{p}}\dot{\boldsymbol{q}}_{\boldsymbol{s}}+2\dot{\boldsymbol{q}}_{\boldsymbol{s}}^{T}\boldsymbol{K}_{\boldsymbol{p}}(\tilde{\boldsymbol{q}}_{\boldsymbol{m}}(t-T_{m}(t))-\tilde{\boldsymbol{q}}_{\boldsymbol{m}}) \quad (36)$$

を得る.さらに,Leibniz-Newton の公式 (18) を代入し,両 辺を [0, *t_f*] で積分する.その結果,上式の右辺8,9項目に 対して定理1と同じ手順で計算することができ,次式を得る ことができる.

$$\int_{0}^{t_{f}} \dot{V}_{2} dt \leq -\lambda_{m}(\mathbf{K}_{d}) ||\dot{\mathbf{e}}_{m}||_{2}^{2} - \lambda_{m}(\mathbf{K}_{d})||\dot{\mathbf{e}}_{s}||_{2}^{2}$$
$$-\lambda_{m}(2\mathbf{B}_{e})||\dot{\mathbf{q}}_{s}||_{2}^{2}$$
$$-\lambda_{m}(2\mathbf{D}_{d} - \frac{T^{*}}{1 - T^{*}}\mathbf{K}_{d})||\dot{\mathbf{q}}_{m}||_{2}^{2}$$
$$-\lambda_{m}(2\mathbf{D}_{d} - \frac{T^{*}}{1 - T^{*}}\mathbf{K}_{d})||\dot{\mathbf{q}}_{s}||_{2}^{2}$$
$$-\lambda_{m}(2\mathbf{D}_{p} - T^{+}_{ms}\mathbf{K}_{p})||\dot{\mathbf{q}}_{m}||_{2}^{2}$$
$$-\lambda_{m}(2\mathbf{D}_{p} - T^{+}_{ms}\mathbf{K}_{p})||\dot{\mathbf{q}}_{s}||_{2}^{2}$$
(37)

以上より,不等式 (32), (33) を満足するように K_p , K_d , D_p , D_d を選択することで,(37) 式は準負定となる.さらに,定理1 と同じ手順でシステムの原点 $\dot{q}_m = \dot{q}_s = \tilde{q}_m = \tilde{q}_s = 0$ は漸 近安定で,マスタとスレーブの位置は $\lim_{t\to\infty} q_m(t) = \bar{q}_m$, $\lim_{t\to\infty} q_s(t) = \bar{q}_s$ となる.

さらに,系1,系2と同様の結論を得ることができ,制御目的2と制御目的3を満足する.

3.3 提案する制御則に関する考察

提案する制御則 1,2 に関してつぎのような事項を示すこ とが出来る.

(注意1) 操縦者や遠隔環境を厳密にモデル化することは 通常困難である.そのため従来研究の多くは,操縦者と遠 隔環境が受動的であると仮定して安定性解析を行なってい る^{8),16),17),20)}.しかし,操縦者はテレオペレーションシス テムに対してエネルギーを供給する源であるため,受動的であ るという仮定は成り立たない.一方,本稿では操縦者の入出 力対 (\dot{q}_m,F_{op}) は受動性を満たさないことは明らかであり, システムに対して有限なエネルギーを与えることを意味して いる. 一方, 遠隔環境(3)に関しては, 従来研究^{8), 16), 17), 20)} と同様に入出力対 (\dot{q}_s, F_{env}) が受動的なシステムである. (注意2)提案する制御則では,遅延の最大値と位置制御ゲ インに比例したゲイン D_p によって位置制御に対する安定性 を保証できる.これは,定数遅延の場合の条件^{19)~21)}の自然 な拡張となっている.さらに,文献28)では,定数遅延にお いて速度制御を行なわず $(K_d = 0)$, マスタおよびスレーブ を1自由度の線形システムとして扱った場合に,(13)式およ び(32)式と同様の安定条件が,必要条件となることが示され ている.したがって,本稿の安定条件も同様に必要条件であ る可能性がある.これに関する詳細な議論は今後の課題であ る.速度制御ゲインに関しては,遅延の変化率と速度制御ゲ インに依存したゲイン $D_{md}(t)$, $D_{md}(t)$, D_d よって安定性 を保証している.しかしながら,速度制御ゲインに関する安 定条件は保守的であり、この軽減も今後の課題である、一方、 提案する制御則で遅延が定数 $(T_i(t) = T_i, \dot{T}_i(t) = 0)$ の場合 には、文献 20),21) と同じ制御則となることは明らかである. (注意 3) 提案する制御則は、最大往復遅延 T_{ms}^+ と遅延の変 化率 $\dot{T}_m(t), \dot{T}_s(t)$ の情報が必要である、最大往復遅延 T_{ms}^+ は、マスタ側からタイムスタンプを付けた情報をスレーブ側 に送り、スレーブ側でそれを直ちに送り返すという作業を複 数回行なうことで計測できる、これは一方向の遅延 $T_m(t)$ 、 $T_s(t)$ の正確な情報が必要なく実装が容易である^(注 1).また、 遅延の変化率 $\dot{T}_m(t), \dot{T}_s(t)$ は、付録 A のアルゴリズムを用 いることで容易に測定できる、これら遅延に対する仮定は、 予測器を用いたテレオペレーションの制御手法^{13),14)}と比較 した場合の優位な点である、しかしながら、インターネット などの通信路を考えた場合には離散時間の通信路を考慮する 必要がある、これに関しては今後の課題である、

(注意 4) 系 1 の結果から,位置制御ゲイン K_p は,マスタ とスレープの位置誤差によって発生する静的な力の伝達性能 を決める.透明性の観点からは,より小さな位置誤差で力が 伝達することが望ましい.したがって,理想的な透明性を実 現するためには,大きな位置制御ゲイン K_p が必要である. さらに,(10)式は次式のように書き換えることができる.

$$\begin{cases} \bar{q}_{m} = (K_{e}^{-1} + K_{p}^{-1})\bar{F}_{op} \\ \bar{q}_{s} = K_{e}^{-1}\bar{F}_{op} \end{cases}$$
(38)

上式から,環境と接触した定常状態での位置誤差を小さくするためにも,大きな位置制御ゲイン K_p が必要である.一方,システムに大きなゲイン(ダンピング) D_p を付加することは応答を遅くし,位置誤差の収束性や操縦者の操作性を劣化させる.したがって,不等式(13),(32)より,システムの性能に関してつぎのような結論が得られる.

1. 目標とする透明性と定常誤差を達成するようにゲイン K_p を設計したとき,要求されるゲイン D_p は最大往復遅 延 T_{ms}^+ に比例して大きくする必要がある.したがって,大 きな最大遅延では操作性と収束性が劣化する.

2. 最大往復遅延 T_{ms}^+ を固定した場合では,大きな K_p (良好な透明性と定常誤差)は,大きな D_p (操作性と収束性の劣化)を要求する.一方,小さな D_p (良好な操作性と収束性)は小さな K_p (透明性と定常誤差の劣化)となる.したがって,これらの性能のトレードオフを考慮して設計する必要がある.

(注意 5) (38) 式から任意の操縦者の力 \bar{F}_{op} , 位置制御ゲイ ン K_p と遠隔環境のバネ係数 K_e が既知であれば,平衡点 \bar{q}_m , \bar{q}_s を計算することができる.上述の議論は,定数遅延 を有するテレオペレーションの PD 型制御²¹⁾でも議論され ており,時変遅延に対しても同様の結論が得られることを意

⁽注1)一方向の遅延を測定するためには,送信側と受信側の制 御ボードの時刻を同期する必要があるが,一般に困難な作業が必 要である.

味する.

(注意 6) 遅延の変化率が正の方向へ大きくなることは、ゲイン (ダンピング) $D_{md}(t)$, $D_{sd}(t)$, D_d を大きくし操作性や 収束性が劣化する.一方,定理 2 (制御則 2) では遅延の変化率の最大値 T^* と速度制御ゲイン K_d に依存したゲイン D_d によりシステムが安定となることを示している.これは大きく遅延が変化する場合には、システムに大きなゲイン (ダンピング) D_d が負荷され続けることになり、定理 1 (制御則 1) と比較して保守的な条件となる.

4. シミュレーションと制御実験による検証

ここでは,提案した制御則のシミュレーションと制御実験 を行なった結果を示す.マスタおよびスレープにはFig.2の ような同じ構造・スケールの平面2自由度ダイレクトドライ プロボットを用いる.(1)式の慣性行列,コリオリカおよび 遠心力の行列は次式のようになる.

$$\boldsymbol{M}(q_i) = \begin{bmatrix} M_1 + 2R\cos(q_2) & M_2 + R\cos(q_2) \\ M_2 + R\cos(q_2) & M_2 \end{bmatrix}$$
(39)
$$\boldsymbol{C}(q_i, \dot{q}_i) = \begin{bmatrix} -R\sin(q_2)\dot{q}_2 & -R\sin(q_2)(\dot{q}_1 + \dot{q}_2) \\ R\sin(q_2)\dot{q}_1 & 0 \end{bmatrix}$$
(40)

各係数はパラメータ同定を行なうことで $M_1 = 0.3657 [\text{kgm}^2]$, $M_2 = 0.0291 [\text{kgm}^2]$, R = 0.0227 [kgm]が得られた.通信路 の遅延は次式のように変化する場合を考える.

$$\begin{cases} T_m(t) = 0.1\sin 4t + 0.3, & \dot{T}_m(t) = 0.4\cos 4t \\ T_s(t) = 0.2\sin 4t + 0.3, & \dot{T}_s(t) = 0.8\cos 4t \end{cases}$$
 (41)

上式より最大往復遅延は $T_{ms}^+ = 0.9[s]$ となり,遅延の変化率の 最大値は $T^* = 0.8$ となる.制御実験においては,制御ボード 内に仮想的な通信路を設け (41) 式の遅延を発生させた.制御 ゲイン K_d , D_p , K_p は,不等式 (13), (32) を満足するように $K_d = \text{diag}(4, 1.5), K_p = \text{diag}(13, 5), D_p = \text{diag}(6, 2.5)$ と設定した.制御則 1 (8) の $K_{md}(t)$, $K_{sd}(t)$, $D_{md}(t)$, $D_{sd}(t)$ は (9) 式のように通信遅延の変化に応じた適切な時変 ゲインとなるように設定した.制御則 2 (30) の D_d は,不等 式 (33) を満足するように $D_d = \text{diag}(3, 1.5)$ と設定した.

4.1 シミュレーション

1

シミュレーションより, (38) 式の平衡点に位置が収束する

Fig. 2 Experimental setup

Fig. 3 Convergence comparison between Control law 1 (C1) and Control law 2 (C2) in simulation (1st joint)

Fig. 4 Convergence comparison between Control law 1 (C1) and Control law 2 (C2) in simulation (2nd joint)

ことを示し,また,制御則1(8)と制御則2(30)の収束性を 比較する.遠隔環境(3)の係数は $B_e = \text{diag}(1,1)$, $K_e = \text{diag}(50,50)$ と設定した.また操縦者の力は $F_{op} = [5, 2]^T$ の定数入力を与える.初期条件は $\dot{q}_m(t) = \dot{q}_s(t) = q_m(t) = q_s(t) = 0$ とする.

上述の条件で制御則 1 と制御則 2 を比較した場合のシミュ レーション結果は Fig. 3,4 のようになり,上図が関節角度の 応答で下図が操縦者の力と遠隔環境からの反力である.(38) 式より,それぞれの位置の平衡点は $\bar{q}_m = [0.485, 0.440]^T$, $\bar{q}_s = [0.100, 0.040]^T$ となった.Fig. 3,4より,マスタとス レーブの位置はそれぞれ平衡点へ漸近的に収束していること が確認できる.また,制御則 1 と制御則 2 を比較した場合, 制御則 1 のほうが速く収束している.これは,制御則 2 で は変化率の最大値から計算されたゲイン D_d が付加されてお り,システムの応答を遅くし性能を劣化させているからであ る.一方,制御則 1 では遅延の変化率に応じた適切なゲイン $D_{md}(t)$, $D_{sd}(t)$ を用いていることで,このような性能劣化 を最小限に抑えている.Fig. 3,4 の下図の力の応答では,操 縦者が加えた力と遠隔環境からの反力が一致することが確認 できる.また,力の応答においても制御則 1 のほうが収束が

Fig. 6 Experimental results in Case 2 (1st joint)

Fig. 7 Experimental results in Case 2 (2nd joint)

速いことが確認できる.

4.2 制御実験

これまでは操縦者の力は定数入力とし,遠隔環境と常に接 触している場合を考えて問題設定を行なった.しかし,実際 のテレオペレーションを操作する場合を考えると,操縦者の 力は任意に変化し,環境に対して「接触する状況」と「接触 しない状況」が空間的に切り替わる.そこで,操縦者が任意 の力を加えて環境との接触動作を行なった場合でも安定とな ることを制御実験により確認する.

遠隔環境は Fig. 2 に示すようなアルミニウム製の硬い壁を 用いた.また環境からの力 *Fenv* と操縦者の力 *Fop* は直接力 センサを用いて測定した.制御則と通信路は,dSPACE シス テム (dSPACE Inc.)を用いて実装し,サンプリングタイム は 2.5 [ms] とした.ここでは,制御則1に対する実験結果を 示す.制御則2についても同様の結果が得られることを確認 している.制御実験の状況としてつぎの2とおりを考える. Case1: スレーブが環境と接触しない遠隔操作 Case2: スレープが環境と接触する遠隔操作

Fig.5~7より,操縦者が任意の力を加えて,環境との接 触動作を行なったとしても安定に動作している.Fig.5は, Case 1 の実験結果を示しており,スレーブの関節角度はマス タの間接角度に追従できていることが確認できる.したがっ て,マスタとスレーブの位置協調が達成できている.Fig.6, 7は, Case 2の実験結果であり, スレーブが環境と接触して いるとき (5-28 [sec]),静的な接触力が操縦者に伝達されてい ることが確認できる.したがって,操縦者は力の伝達によっ て遠隔環境を感じることができる.またスレーブが環境と接 触せずに,操縦者が力を加えないとき(30-40[sec]),マスタと スレーブの位置は一致しており位置の協調が達成できている. 一方 Fig.7 において,5-28 [sec] で力誤差が 30-40[sec] で位置 誤差がある.これはロボットに存在する動摩擦などの影響に よるものと考えられ,シミュレーションにおいてはこのよう な誤差は見られない.より正確に動作するテレオペレーショ ンシステムを構成するためにはこれらの摩擦を補償する必要 がある.

5. おわりに

本稿では,時変の通信遅延を有する非線形テレオペレーショ ンに対して新しい制御則を2種類提案した.これらの制御則 は,通信遅延の変化率に依存した速度制御と最大遅延に依存 した位置制御で構成される PD 型制御則である. Lyapunov Krasovskii 関数を用いた安定性解析を行なうことで,システ ムが漸近安定となるためのゲイン条件を導出した.さらに, マスタとスレーブの位置が協調して動作すること,スレーブ の静的な接触力が操縦者に伝達されることを示した.シミュ レーションより,マスタとスレーブの位置が平衡点に漸近収 束することを示した.また,制御実験を行ない提案する制御 則の有効性を実証した.本稿の特徴は,単純な制御則を用い たとしても,時変の通信遅延を有するバイラテラルテレオペ レーションを安定に制御できることである.今後の課題とし ては,より現実的な操縦者と遠隔環境や離散時間で表現され る通信遅延に対する安定性の証明および安定条件の保守性の 評価や軽減などが挙げられる.

参考文献

- 1) 横小路泰義:マスタ・スレープ制御の理論,日本ロボット学会, 11-6,794/802 (1993)
- 2) P.F. Hokayem and M.W. Spong: Bilateral Teleoperation:

An historical survey, *Automatica*, **42**-12, 2035/2057 (2006) 3) 佐野,藤本:ネットワーク社会へのロボティックスの新たな展

- 開,システム/制御/情報,44-12,710/715 (2000) 4) 汐月哲夫:インターネットを介した双方向遠隔制御における伝
- 達遅延問題,計測と制御,41-7,507/512 (2002)
- 5)山下裕:遠隔制御における伝送遅延・情報欠落の補償,計測と 制御,41-7,513/518 (2002)
- 6) K. Kosuge, H. Murayama and K. Takeo: Bilateral Feedback Control of Telemanipulators via Computer Network, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1380/1385 (1996)
- 7) Y. Yokokohji, T. Tsujioka and T. Yoshikawa: Bilateral Control with Time-Varying Delay including Communication Blackout, Proc. of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 285/292 (2002)
- 8) N. Chopra, M.W. Spong, S. Hirche and M. Buss: Bilateral Teleoperation over the Internet: The Time Varyng Delay Problem, Proc. of the 2003 American Control Conference, 155/160 (2003)
- 9) R. Oboe and P. Fiorini: A Design and Control Environment for Internet-Based Telerobotics, *The International Journal of Robotics Research*, **17**-4, 433/449 (1998)
- 10) 眞島,鈴木,古田:ネットワークを介したバイラテラル制御系の 個別設計法(時間変動する任意の通信遅れに対して安定性を保 証できる制御器の設計),日本機械学会論文集(C編),70-696, 63/70(2004)
- 11) E. Slawiński, J.F. Postigo and V. Mut: Bilateral teleoperation through the Internet, *Robotics and Autonomous Systems*, 55-3, 205/215 (2007)
- 12) 飯山,名取,大西:環境との接触を考慮した変動通信遅延下で のバイラテラル制御,電気学会論文誌 D, 127-10, 1050/1056 (2007)
- 13) Y.-J. Pan, C. Canudas-de-Wit and O. Sename: A New Predictive Approach for Bilateral Teleoperation With Applications to Drive-by-Wire Systems, *IEEE Trans. on Robotics*, **22**-6, 1146/1162 (2006)
- 14) 吉田, 滑川: 通信遅延を有するテレオペレーションの予測型 PD 制御, 第 50 回自動制御連合講演会予稿集, 289/294 (2007)
- 15) R.J. Anderson and M.W. Spong: Bilateral Control of Teleoperators with Time Delay, *IEEE Trans. on Automatic Control*, **34**-5, 494/501 (1989)
- 16) N. Chopra, M.W. Spong, R. Ortega and N.E. Barabanov: On Tracking Performance in Bilateral Teleoperation, *IEEE Trans. on Robotics*, **22**-4, 861/866 (2006)
- 17) T. Namerikawa and H. Kawada: Symmetric Impedance Matched Teleoperation with Position Tracking, Proc. of the 45th IEEE Conference on Decision and Control, 4496/4501 (2006)
- 18) T. Miyoshi, K. Terasima and M. Buss: A Design Method of Wave Filter for Stabilizing Non-Passive Operating System, Proc. of the 2006 IEEE International Conference on Control Applications, 1318/1324 (2006)
- 19) T. Imaida, Y. Yokokohji, T. Doi, M. Oda and T. Yoshikawa: Ground-Space Bilateral Teleoperation of ETS-VII Robot Arm by Direct Birateral Coupling Under 7-s Time Delay Condition, *IEEE Trans. on Robotics and Automation*, **20**-3, 499/511 (2004)
- 20) D. Lee and M.W. Spong: Passivie Bilateral Teleoperation With Constant Time Delay, *IEEE Trans. on Robotics*, 22-2, 269/281 (2006)
- 21) R. Lozano, N. Chopra and M.W. Spong: Convergence Analysis of Birateral Teleoperation with Constant Human Input, Proc. of the 2007 American Control Conference, 1443/1448 (2007)

- 22) M.W. Spong and S. Hutchinson and M. Vidyasagar: Robot Modeling and Control, Wiley (2006)
- 23) Y. Yokokohji and T. Yoshikawa: Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling
 Formulation and Experiment, *IEEE Trans. on Robotics* and Automation, 10-5, 605/620 (1993)
- 24) D.A. Lawrence: Stability and Transparency in Bilateral Teleoperation, *IEEE Trans. on Robotics and Automation*, 9-5, 624/637 (1993)
- 25) S. Hirche, M. Ferre, J. Barrio and C. Melchiorri: Birateral Control Architectures for Telerobotics, *Advances in Telerobotics*, M. Ferre et al. (Eds), Springer-Verlag, 163/176 (2007)
- 26) G. Tao: A Simple Alternative the Barbalat Lemma, IEEE Trans. on Automatic Control, 42-5, 698 (1997)
- 27) H.K. Khalil: Nonlinear System, second edition, Prentice-Hall (1996)
- 28) E. Nuño, R. Ortega, N, Barabanov and L. Basañez: A Globally Stable PD Controller for Bilateral Teleoperators, *IEEE Trans. on Robotics*, 24-3, 753/758 (2008)

《付 録》

A. 通信遅延の変化率の測定

遅延の変化率は, Fig. A.1 のように送信側で傾き 1 のラ ンプ関数 $(r(t), \dot{r}(t) = 1)$ を通信路に送り,受信側で微分と 簡単な演算を行なうことで測定することが出来る.数式を用 いて表現すると次式のようになる.

$$\hat{T}_{i}(t) = -\left[\frac{d}{dt}\left\{r_{i}(t - T_{i}(t))\right\}\right] + 1, \ i = m, s$$
 (A.1)

上式を計算すると $\hat{T}_i(t) = rac{dT_i(t)}{dt}$ となり正確に測定できることが確認できる.

[著者紹介]

河 田 久之輔(正会員)

2005 年長岡技術科学大学工学部機械創造工学課 程卒業.2007 年金沢大学大学院自然科学研究科電 子情報工学専攻博士前期課程修了,同年電子情報 科学専攻博士後期課程入学,現在に至る.通信遅 延を有するテレオペレーションシステムの制御に 興味をもつ.

滑川 徹(正会員)

1994 年金沢大学大学院自然科学研究科システム 科学専攻博士課程中退.同年金沢大学工学部電気・ 情報工学科助手.同講師を経て2002 年長岡技術 科学大学機械系助教授.2006 年金沢大学大学院自 然科学研究科電子情報科学専攻助教授,2007 年准 教授となり現在に至る.ロバスト制御理論とその ロボティクス応用に関する研究に従事.博士(工 学).システム制御情報学会,IEEE などの会員.