トマス, モーガン (トマス モーガン)

Thomas, Morgan

写真a

所属(所属キャンパス)

理工学研究科 (矢上)

職名

特任准教授(有期)

メールアドレス

メールアドレス

HP

経歴 【 表示 / 非表示

  • 2002年07月
    -
    2003年10月

    コグニス社(英国)

  • 2008年04月
    -
    2009年04月

    アーヘン工科大学(ドイツ)

  • 2009年05月
    -
    2011年12月

    サスカチュワン大学・マギル大学・ヨーク大学(カナダ、クロスアポイントメント)

  • 2012年08月
    -
    2014年09月

    理化学研究所, Byon 国際主幹研究ユニット

  • 2014年10月
    -
    2017年03月

    横浜国立大学, 大学院工学研究院

全件表示 >>

学歴 【 表示 / 非表示

  • 2000年09月
    -
    2004年07月

    バース大学(英国), 理科研究科 化学学科, MChem, Chemistry with Industrial Training

    グレートブリテン・北アイルランド連合王国(英国)

  • 2004年09月
    -
    2008年06月

    ノッティンガム大学(英国), 理科研究科 化学専攻, PhD Chemistry

    グレートブリテン・北アイルランド連合王国(英国)

 

研究分野 【 表示 / 非表示

  • Chemistry, Green Chemistry, Electrochemistry, Electrochemical Devices, Batteries, Electrolytes, Ionic Liquids, Highly Concentrated Electrolytes, Carbon Dioxide Utilisation, Biomass

 

著書 【 表示 / 非表示

論文 【 表示 / 非表示

  • Effect of cation side-chain structure on the physicochemical properties of pyrrolidinium-based electrolytes upon mixing with sodium salt

    Yoshifumi Hirotsu, Morgan L. Thomas, Yuko Takeoka, Masahiro Rikukawa, Masahiro Yoshizawa-Fujita

    Science and Technology of Advanced Materials (Taylor & Francis Ltd)  26 ( 1 ) 2466417 2025年12月

    査読有り,  ISSN  1468-6996

     概要を見る

    In recent years, the development of next-generation secondary batteries employing resource-abundant metals such as Na has garnered significant attention. However, the high reactivity of Na raises safety concerns, necessitating the development of safer devices. To address this, ionic liquids (ILs) and organic ionic plastic crystals (OIPCs) have emerged as promising novel electrolytes. Despite their potential, studies investigating the influence of cation structures on various properties remain scarce, particularly in composites where Na salts are introduced into OIPCs. This study focuses on the effects of cation species and Na-salt concentration in OIPCs, specifically in N,N-diethylpyrrolidinium bis(fluorosulfonyl)amide ([C₂epyr][FSA]) and N-ethyl-N-isopropylpyrrolidinium bis(fluorosulfonyl)amide ([Cᵢ₃epyr][FSA]), with the addition of sodium bis(fluorosulfonyl)amide (NaFSA). The phase transition behavior, dissociation state of Na salts, and electrochemical properties exhibited significant differences based on the cationic structure of the OIPCs. The combination of each OIPC with Na salt resulted in liquid mixtures, and the ionic conductivity increased significantly as the Na salt concentration increased. High ionic conductivities were achieved with [C₂epyr][FSA]/NaFSA (20 mol%) and [Cᵢ₃epyr][FSA]/NaFSA (10 mol%), showing values of 2.7 × 10⁻³ and 2.2 × 10⁻³ S cm⁻¹ at 25 degrees C, respectively. Linear sweep voltammetry results indicated superior oxidative stability in the [Ci₃epyr][FSA] system. Solvation numbers of Na⁺, influenced by differences in cationic side-chain structures, were determined to be 2.7 for the [C₂epyr]⁺ system and 2.9 for the [Cᵢ₃epyr]⁺ system. The results suggest that controlling solvation numbers is a critical factor in the molecular design of high-performance ionic conductors.

  • A Simple Regeneration Process Using a CO<inf>2</inf>-Switchable-Polarity Solvent for Cellulose Hydrogels

    Matsui A., Ayu Putri D., Thomas M.L., Takeoka Y., Rikukawa M., Yoshizawa-Fujita M.

    ChemSusChem (Wiley-VCH Verlag GmbH)  18 ( 6 ) e202401848 2024年11月

    査読有り,  ISSN  1864-5631

     概要を見る

    Cellulose is one of the main components of plant cell walls, abundant on earth, and can be acquired at a low cost. Furthermore, there has been increasing interest in its use in environmentally friendly, carbon-neutral, sustainable materials. It is expected that the applications of cellulose will expand with the development of a simple processing method. In this study, we dissolved cellulose in aqueous N-butyl-N-methylpyrrolidinium hydroxide solution ([C4mpyr][OH]/H2O) and investigated the cellulose regeneration process based on changes in solubility upon application of CO2 gas. We investigated the effect of transformation of the anion chemical structure on cellulose solubility by flowing CO2 gas into [C4mpyr][OH]/H2O and conducted pH, FT-IR, and 13C NMR measurements. We observed that the changes in anion structure allowed for the modulation of cellulose solubility in [C4mpyr][OH]/H2O, thus establishing a simple and safe cellulose regeneration process. This regeneration process was also applied to enable the production of cellulose hydrogels. The hydrogel formed using this method was revealed to have higher mechanical strength than an analogous hydrogel produced using the same dissolution solvent with the addition of a cross-linker. The ability to produce cellulose-based hydrogels of different mechanical properties is expected to expand the possible applications.

  • Evaluation of the Solid-Electrolyte Interphase Formation in a Bis(fluorosulfonyl)amide Based Ionic Liquid in the Presence Lithium Ion Using Different Redox Probes

    Shunosuke Momose, Morgan L. Thomas, Nobuyuki Serizawa, Yasushi Katayama

    ECS Transactions 2024年09月

    査読有り

  • Efficient Exploration of Highly Conductive Pyrrolidinium-Based Ionic Plastic Crystals Using Materials Informatics

    Ootahara T., Hatakeyama-Sato K., Thomas M.L., Takeoka Y., Rikukawa M., Yoshizawa-Fujita M.

    ACS Applied Electronic Materials (American Chemical Society (ACS))  6 ( 8 ) 5866 - 5878 2024年07月

    査読有り,  ISSN  2637-6113

     概要を見る

    Organic ionic plastic crystals (OIPCs), which are soft crystals with plasticity and ionic conductivity, are expected to be applied as solid electrolytes in battery applications. Further improvement of ionic conductivity is necessary for practical use as an electrolyte for energy storage devices. Materials Informatics (MI) is a method of incorporating information science in materials development. In this research, MI is being used to develop OIPCs with high ionic conductivity. By using informatics science in addition to chemical knowledge, this research can be carried out efficiently and innovatively. The synthesis of eight new compounds resulted in six of them being solid at room temperature, while two of them were in a liquid state, namely, ionic liquids. We evaluated the phase transition temperatures and ionic conductivity for each compound. Notably, N-ethyl-N-methylpyrrolidinium trifluoro(trifluoromethyl)borate ([C2mpyr][CF3BF3]) exhibited a high ionic conductivity of 1.75 × 10-4 S cm-1 at 25°C, which is one of the highest values reported among OIPCs to date. The combination of an experimental and MI based approach revealed an improved understanding of the relationship between ion size and ionic conductivity for a series of pyrrolidinium-based OIPCs, and it is expected that further improvements to this approach will yield greater understanding of structure-property relationships.

  • Boosting the Ionic Conductivity of Pyrrolidinium-Based Ionic Plastic Crystals by LLZO Fillers

    Ariga K., Akakabe S., Sekiguchi R., Thomas M.L., Takeoka Y., Rikukawa M., Yoshizawa-Fujita M.

    ACS Omega (ACS Omega)  9 ( 20 ) 22203 - 22212 2024年05月

    査読有り,  ISSN  2470-1343

     概要を見る

    Organic ionic plastic crystals (OIPCs) have attracted attention as novel organic solid electrolyte materials, but their insufficient mechanical strength and ionic conductivity have prevented their application. In this study, a lithium salt, lithium bis(fluorosulfonyl)amide (LiFSA), and an inorganic solid electrolyte, Li7La3Zr2O12 (LLZO), were added to an OIPC, N,N-diethylpyrrolidinium bis(fluorosulfonyl)amide ([C2epyr][FSA]). The fabricated organic-inorganic hybrid solid electrolytes were evaluated thermally, mechanically, and electrochemically to reveal which factors affect the properties of the electrolytes. All samples showed excellent thermal stability regardless of LiFSA or LLZO concentration, and they were found to be highly plastic and ion-conductive solids at a wide range of temperatures. It was also revealed that the addition of LLZO raised the nanoindentation stiffness (HIT) of the [C2epyr][FSA]/LiFSA composites. The ionic conductivity of the hybrid electrolytes was higher than that of the pristine OIPC, reaching a value of 2.1 × 10-4 S cm-1 at 25 °C upon addition of appropriate amounts of LiFSA and LLZO. Overall, samples with higher LiFSA concentration and moderate LLZO concentration exhibited higher ionic conductivity. Cyclic voltammetry results showed that the [C2epyr][FSA]/LiFSA/LLZO composites were lithium-ion conductors. These findings indicate that by optimizing the concentrations of lithium salt and LLZO, it would be possible to realize their applications as solid electrolytes.

全件表示 >>

総説・解説等 【 表示 / 非表示

  • Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries

    Thomas M.L., Hatakeyama-Sato K., Nanbu S., Yoshizawa-Fujita M.

    Energy Advances (Energy Advances)  2 ( 6 ) 748 - 764 2023年

    筆頭著者,  ISSN  2753-1457

     概要を見る

    The growing global demand for energy has led to the active development of efficient energy generation and storage technologies, driving the development of electrochemical devices such as high-energy density rechargeable batteries, fuel cells and solar cells. One of the essential materials for the development of high-performance electrochemical devices is the electrolyte. Currently, flammable electrolyte solutions are used, causing problems such as leakage and ignition incidents. It would be significant if the electrolyte could be replaced with a solid electrolyte, as this would eliminate these problems. In addition, with the increasing size of electrochemical devices, there is a societal demand for safer electrochemical devices, and the development of high-performance solid electrolytes is becoming more active. Although development has mainly focused on inorganic and solid polymer electrolytes, organic ionic plastic crystals (OIPCs) are beginning to attract attention as new candidates for flexible solid electrolytes. In this review, we describe OIPCs for lithium secondary batteries. Firstly, we introduce OIPCs and OIPC/polymer composites as lithium-ion conductors and discuss the effects of ionic architecture and polymer species on their ionic conduction. Secondly, we present recent progress in the development of lithium secondary batteries with OIPC-based solid electrolytes.

  • Role of Cation Structure in CO

    Eri, Hayashi, Kei, Hashimoto, Morgan, L Thomas, Seiji, Tsuzuki, Masayoshi, Watanabe

    Membranes 9 ( 7 )  2019年05月

    ISSN  2077-0375

     概要を見る

    The development of suitable separation technologies for the separation of carbon dioxide is a pressing technological requirement. The application of ion gel membranes for this purpose continues to stimulate a great deal of research, and in this study we focus on the chemical structure of the ionic liquid component in the ion gel, and its interactions with the sulfonated polyimide polymer. Whilst such membranes are known to give promising carbon dioxide separation properties together with mechanical strength and thin-film-processability, we further elaborate on how changing the cation of the ionic liquid from a typical imidazolium cation to a protic variant effects the physicochemical, thermal, and structural properties of the membranes, and how these changes further influence the carbon dioxide separation properties. We compare and contrast our findings with our earlier study on protic and aprotic ammonium-based ionic liquids, and highlight that for CO

  • From ionic liquids to solvate ionic liquids: Challenges and opportunities for next generation battery electrolytes

    Watanabe M., Dokko K., Ueno K., Thomas M.

    Bulletin of the Chemical Society of Japan (Bulletin of the Chemical Society of Japan)  91 ( 11 ) 1660 - 1682 2018年11月

    最終著者,  ISSN  0009-2673

     概要を見る

    Certain concentrated mixtures of lithium salt and solvent ( ligand) are no longer simple solutions, but categorized as solvate ionic liquids (SILs), where the solvent strongly coordinates to the cation to form a solvate, a negligible amount of free solvent remains, and thus the SIL consists of the solvate cation and the anion. Typical examples are mixtures of lithium bis(trifluoromethane sulfonyl) amide (Li[TFSA]) and certain glymes (CH3-O-(CH2-CH2-O)(n)-CH3) The successful formation of a SIL greatly depends on both the ligand and lithium salt structures. To obtain robust and long-lived solvates, a ligand exhibiting a chelate effect is essential and n = 3 and 4 (i.e. triglyme and tetraglyme) are suitable for the formation of lithium solvates. The Lewis basicity of the lithium salt anion also significantly affects the formation of SILs. Specifically, a weak Lewis basicity promotes the formation of a SIL, since the ligand-Li+ interaction overwhelms the Li+-anion interaction. SILs can be diluted with rather low polarity solvents to increase the ionic conductivity, where the solvate structure is maintained even after the dilution. SILs exhibit unique features as electrolytes, including the enhancement of oxidation stability of the component glymes, unique Li+ transport through ligand exchange when interfacial electrochemical reactions are occurring, the inhibition of aluminum corrosion when Al foil is used as a cathode current collector, poorly-solubilizing towards ionic electroactive materials, and electrochemical graphite intercalation reactions. These features greatly enhance the possibility for application of SILs as next generation lithium battery electrolytes. Furthermore, new polymer electrolytes containing SILs have been proposed, simultaneously enabling film-processability, high ionic conductivity, thermal stability, and a wide potential window. Preservation of the solvate structure in the polymeric phases is pivotal to such achievements.

  • Phase behaviour and thermodynamics: General discussion

    Abbott A., Abe H., Aldous L., Atkin R., Bendová M., Busato M., Canongia Lopes J.N., Costa Gomes M., Cross B., Dietz C., Everts J., Firestone M., Gardas R., Gras M., Greaves T., Halstead S., Hardacre C., Harper J., Holbrey J., Jacquemin J., Jessop P., Macfarlane D., Maier F., Medhi H., Mezger M., Pádua A., Perkin S., Reid J.E.S.J., Saha S., Slattery J.M., Thomas M.L., Tiwari S., Tsuzuki S., Uralcan B., Watanabe M., Wishart J., Youngs T.

    Faraday Discussions (Faraday Discussions)  206   113 - 139 2018年01月

    ISSN  1359-6640

  • Electrochemistry: General discussion

    Abbott A., Aldous L., Borisenko N., Coles S., Fontaine O., Gamarra Garcia J.D., Gardas R., Hammond O., Hardwick L.J., Haumesser P.H., Hausen F., Horwood C., Jacquemin J., Jones R., Jónsson E., Lahiri A., Macfarlane D., Marlair G., May B., Medhi H., Paschoal V.H., Reid J.E.S.J., Schoetz T., Tamura K., Thomas M.L., Tiwari S., Uralcan B., Van Den Bruinhorst A., Watanabe M., Wishart J.

    Faraday Discussions (Faraday Discussions)  206   405 - 426 2018年01月

    ISSN  1359-6640

全件表示 >>

研究発表 【 表示 / 非表示

  • ビス(フルオロスルホニル)アミド系イオン液体電解液中におけるリチウムの析出溶解反応に伴う形態変化と充放電特性

    西川 みか, トマス モーガン・レスリー, 芹澤 信幸, 片山 靖

    第65回電池討論会 (京都) , 

    2024年11月

    口頭発表(一般), 電気化学会

  • Morphological changes for lithium deposition and subsequent dissolution in bis(fluorosulfonyl)amide-based ionic liquids and effect on cycling

    M. Nishikawa, M.L. Thomas, N. Serizawa, Y. Katayama

    11ᵗʰ Workshop on Lithium-Sulfur Batteries (Dresden, Germany) , 

    2024年11月

    口頭発表(一般), Fraunhofer IWS

  • Highly Concentrated Li⁺ Electrolytes with Molecular/Polymeric Diketones and Related Moieties

    トマス モーガン・レスリー

    Symposium on Functional Ionic Materials and Devices, 

    2022年09月

    口頭発表(一般), 柔粘性結晶研究会

  • Exploring Lithium-based Ionic Liquid and Concentrated Electrolyte Systems for Air and Sulfur Batteries

    M.L. Thomas, K. Ueno, K. Dokko, M. Watanabe

    ICACC (Daytona Beach, USA) , 

    2019年01月
    -
    2019年02月

    口頭発表(招待・特別), The American Ceramic Society

  • Enabling the Application of a Binary Solvate Ionic Liquid / CO₂ Binary Mixture as Electrolyte for Li-S Battery (oral and poster)

    Morgan L. Thomas, Yukiko Matsui, Kazuhide Ueno, Masashi Ishikawa, Kaoru Dokko, Masayoshi Watanabe

    APCIL-6 (鳥取、日本) , 

    2018年10月
    -
    2018年11月

    口頭発表(一般)

全件表示 >>

知的財産権等 【 表示 / 非表示

  • 二次電池

    出願日: 特願2017-555010   

    特許権

受賞 【 表示 / 非表示

  • Green Chemistry Writing Competition

    Morgan L. THOMAS, 2006年, Crystal Faraday、英国

    受賞区分: その他,  受賞国: グレートブリテン・北アイルランド連合王国(英国)

  • Building Experience and Skill Travel Scholarship (BESTS)

    Morgan L. THOMAS, 2006年, ノッティンガム大学、英国

    受賞区分: その他,  受賞国: グレートブリテン・北アイルランド連合王国(英国)

  • Robert Bolland Memorial Prize

    Morgan L. THOMAS, 2004年, バース大学、英国

    受賞区分: その他,  受賞国: グレートブリテン・北アイルランド連合王国(英国)

     説明を見る

    Highest overall marks in Chemistry course

その他 【 表示 / 非表示

  • 安全教育の実施、秋学期2022

    2022年

     内容を見る

    「高圧ガス講習会」
    内容: 高圧ガス。
    理工安全委員会が行っていただいた日本語版を英語版(新版、パワーポイント約20スライド)に翻訳して、発表頂きました。

  • 安全教育の実施、春学期2022

    2022年

     内容を見る

    上智大学理工学部
    「化学物質講習会」、「高圧ガス講習会」
    内容: 事故、防護具、火災、試薬在庫管理、環境、高圧ガス。
    理工安全委員会が行っていただいた日本語版を英語版(新版、パワーポイント約90スライド)に翻訳して、発表いたしました。

  • 安全教育の実施、秋学期2021

    2021年

     内容を見る

    2021年9月 上智大学理工学部
    「安全に実験を行うために」
    内容: 地震対策、化学物質の毒性、予防、救急。
    理工安全委員会が行っていただいた日本語版を英語版(パワーポイント約80スライド)に翻訳して、発表いたしました。(オンデマンド動画)

  • 安全教育の実施、春学期2021

    2021年

     内容を見る

    上智大学理工学部
    「化学薬品を安全に使用するために」
    内容: 事故、防護具、火災、高圧ガス、試薬在庫管理。
    理工安全委員会が行っていただいた日本語版を英語版(新版、パワーポイント約70スライド)に翻訳して、発表いたしました。(オンデマンド動画)

  • 安全教育の実施、秋学期2020

    2020年

     内容を見る

    上智大学理工学部
    「有機溶剤・特定化学物質の使用に関する安全講習」
    内容: 事故、健康被害、毒性、火災・爆発、液体窒素、廃液、試薬在庫管理。
    理工安全委員会が行っていただいた日本語版を英語版(パワーポイント約80スライド、2019年度版の最新)に翻訳して、発表いたしました。(オンデマンド動画)

全件表示 >>

 

担当経験のある授業科目 【 表示 / 非表示

全件表示 >>

 

社会活動 【 表示 / 非表示

  • Demonstrator at RIKEN Open Day

    2013年04月

学術貢献活動 【 表示 / 非表示

  • External Reviewer of Doctoral Thesis (University of Valladolid)

    2019年04月

所属学協会 【 表示 / 非表示

  • イオン液体研究会, 

    2016年11月
    -
    継続中
  • 化学工学会, 

    2016年06月
    -
    継続中
  • The Electrochemical Society (ECS, 米国), 

    2014年03月
    -
    継続中
  • 日本化学会, 

    2012年12月
    -
    継続中
  • 電気化学会, 

    2012年11月
    -
    継続中

全件表示 >>