トマス, モーガン (トマス モーガン)

Thomas, Morgan

写真a

所属(所属キャンパス)

理工学研究科 (矢上)

職名

特任准教授(有期)

メールアドレス

メールアドレス

HP

経歴 【 表示 / 非表示

  • 2002年07月
    -
    2003年10月

    コグニス社(英国)

  • 2008年04月
    -
    2009年04月

    アーヘン工科大学(ドイツ)

  • 2009年05月
    -
    2011年12月

    サスカチュワン大学・マギル大学・ヨーク大学(カナダ、クロスアポイントメント)

  • 2012年08月
    -
    2014年09月

    理化学研究所, Byon 国際主幹研究ユニット

  • 2014年10月
    -
    2017年03月

    横浜国立大学, 大学院工学研究院

全件表示 >>

学歴 【 表示 / 非表示

  • 2000年09月
    -
    2004年07月

    バース大学(英国), 理科研究科 化学学科, MChem, Chemistry with Industrial Training

    グレートブリテン・北アイルランド連合王国(英国)

  • 2004年09月
    -
    2008年06月

    ノッティンガム大学(英国), 理科研究科 化学専攻, PhD Chemistry

    グレートブリテン・北アイルランド連合王国(英国)

 

研究分野 【 表示 / 非表示

  • Chemistry, Green Chemistry, Electrochemistry, Electrochemical Devices, Batteries, Electrolytes, Ionic Liquids, Highly Concentrated Electrolytes, Carbon Dioxide Utilisation, Biomass

 

著書 【 表示 / 非表示

論文 【 表示 / 非表示

  • Boosting the Ionic Conductivity of Pyrrolidinium-Based Ionic Plastic Crystals by LLZO Fillers

    Ariga K., Akakabe S., Sekiguchi R., Thomas M.L., Takeoka Y., Rikukawa M., Yoshizawa-Fujita M.

    ACS Omega (ACS Omega)  9 ( 20 ) 22203 - 22212 2024年05月

    査読有り

     概要を見る

    Organic ionic plastic crystals (OIPCs) have attracted attention as novel organic solid electrolyte materials, but their insufficient mechanical strength and ionic conductivity have prevented their application. In this study, a lithium salt, lithium bis(fluorosulfonyl)amide (LiFSA), and an inorganic solid electrolyte, Li7La3Zr2O12 (LLZO), were added to an OIPC, N,N-diethylpyrrolidinium bis(fluorosulfonyl)amide ([C2epyr][FSA]). The fabricated organic-inorganic hybrid solid electrolytes were evaluated thermally, mechanically, and electrochemically to reveal which factors affect the properties of the electrolytes. All samples showed excellent thermal stability regardless of LiFSA or LLZO concentration, and they were found to be highly plastic and ion-conductive solids at a wide range of temperatures. It was also revealed that the addition of LLZO raised the nanoindentation stiffness (HIT) of the [C2epyr][FSA]/LiFSA composites. The ionic conductivity of the hybrid electrolytes was higher than that of the pristine OIPC, reaching a value of 2.1 × 10-4 S cm-1 at 25 °C upon addition of appropriate amounts of LiFSA and LLZO. Overall, samples with higher LiFSA concentration and moderate LLZO concentration exhibited higher ionic conductivity. Cyclic voltammetry results showed that the [C2epyr][FSA]/LiFSA/LLZO composites were lithium-ion conductors. These findings indicate that by optimizing the concentrations of lithium salt and LLZO, it would be possible to realize their applications as solid electrolytes.

  • Hydrothermal processing of waste pine wood into industrially useful products

    Gokhale J.S., Hude M.P., Yadav G.D., Thomas M., Kozinski J., Dalai A.K.

    Journal of the Indian Chemical Society (Journal of the Indian Chemical Society)  99 ( 9 ) 100647 - 100647 2022年09月

    査読有り,  ISSN  00194522

     概要を見る

    An ongoing major outbreak of mountain pine beetle in Western Canada has provided a clear opportunity to utilize waste pinewood as a source of renewable energy. Therefore hydrothermal processing of waste pinewood as a feedstock for bio-oil and biochar production using subcritical and supercritical water technology was carried out in semi-batch mode to investigate the effect of pressure (200–400 bar) and temperature (300–400 °C) on the yield and composition of bio-oil. The pinewood samples have very high cellulose and hemicellulose content but low ash content and are thus a formidable feedstock for bioenergy production. The optimum conditions for the hydrothermal processing of the pinewood in a tubular reactor were found to be 400 °C and 250 bars with respect to biochar and bio-oil yield based on the highest calorific value analysis. Detailed characterization of bio-oil and biochar was performed using GCMS, NMR, SEM, calorific value, and elemental analysis, respectively. The critical components of bio-oil were found to be phenols, methoxyphenols, hydroxymethyl furfural (HMF), and vanillin, whereas as compared to the raw pine wood, the biochar was considerably lower H:C and O:C ratios than those of the unprocessed pinewood. The analyses of bio-oil by means of GCMS and 1H NMR showed that it was mainly composed of heterocyclic compounds, phenols, aldehydes and acids.

  • Rheological and Ionic Transport Properties of Nanocomposite Electrolytes Based on Protic Ionic Liquids and Silica Nanoparticles

    Marium M., Hoque M., Miran M.S., Thomas M.L., Kawamura I., Ueno K., Dokko K., Watanabe M.

    Langmuir (Langmuir)  36 ( 1 ) 148 - 158 2020年01月

    査読有り,  ISSN  07437463

     概要を見る

    In this study, the effect of hydrophilic silica nanoparticle (AEROSIL 200) addition on the rheological and transport properties of several protic ionic liquids (PILs) consisting of protonated 1,8-diazabicyclo[5.4.0]undec-7-ene cation (DBU) was studied. Interactions between the surface silanol groups of the silica nanoparticles and the ions of these PILs affected the nature of particle aggregation and the hydrogen bonding environment, which was reflected in the nonlinear rheological behaviors and transport properties of their colloidal suspensions. In contrast to shear-thinning gels formed by colloidal suspensions of the silica nanoparticles in [DBU][TFSA] ([TFSA] = [N(SO2CF3)2]), [DBU][TfO] ([TfO] = [CF3SO3]), and [DBU][TFA] ([TFA] = [CF3CO2]), a shear-thickening stable suspension was formed in the [DBU][MSA] ([MSA] = [CH3SO3]) system. A relatively strong interaction between the silanol groups and the ions of [DBU][MSA] and the ability of this PIL to form a thicker solvation layer through hydrogen bonding were assumed to be responsible for this unique behavior. Moreover, the [DBU][MSA]-silica system showed a large enhancement in the conductivity at a certain silica concentration. This enhancement was not observed in the other PIL-silica composites that exhibited shear-thinning behavior. Even though diffusion of ions was found to be restricted in the presence of silica, a preferentially stronger interaction between [MSA] anions and the silica surface resulted in an increase in the number of charge carriers.

  • Role of cation structure in CO<inf>2</inf> separation by ionic liquid/sulfonated polyimide composite membrane

    Hayashi E., Hashimoto K., Thomas M.L., Tsuzuki S., Watanabe M.

    Membranes (Membranes)  9 ( 7 ) 81 - 81 2019年07月

     概要を見る

    The development of suitable separation technologies for the separation of carbon dioxide is a pressing technological requirement. The application of ion gel membranes for this purpose continues to stimulate a great deal of research, and in this study we focus on the chemical structure of the ionic liquid component in the ion gel, and its interactions with the sulfonated polyimide polymer. Whilst such membranes are known to give promising carbon dioxide separation properties together with mechanical strength and thin-film-processability, we further elaborate on how changing the cation of the ionic liquid from a typical imidazolium cation to a protic variant effects the physicochemical, thermal, and structural properties of the membranes, and how these changes further influence the carbon dioxide separation properties. We compare and contrast our findings with our earlier study on protic and aprotic ammonium-based ionic liquids, and highlight that for CO2 absorption behavior in the imidazolium systems, the importance of directionality of interactions (ion pairs exhibit a large energy stabilization only for a specific geometrical arrangement of cation and anion, e.g., hydrogen bonding rather than Coulombic interaction) between cation and anion applies not only to the protic system, but also to the nominally aprotic cation. Finally, we demonstrate that the phase separation behavior in the ion gels is an important factor in determining the carbon dioxide separation behavior.

  • Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li–S Battery Performance

    Azusa Nakanishi, Kazuhide Ueno, Daiki Watanabe, Yosuke Ugata, Yoshiharu Matsumae, Jiali Liu, Morgan L. Thomas, Kaoru Dokko, Masayoshi Watanabe

    Journal of Physical Chemistry C (American Chemical Society)  123 ( 23 ) 14229 - 14238 2019年05月

    査読有り,  ISSN  1932-7447

     概要を見る

    Following our recent study demonstrating predominant Li-ion hopping conduction in sulfolane (SL)-based highly concentrated electrolytes with LiBF4, LiClO4, and lithium bis(fluorosulfonyl)amide, herein a systematic study on transport properties and Li-ion coordination of SL-based electrolytes with lithium bis(trifluoromethanesulfonyl)amide was performed. In the highly concentrated region, Li ions clearly diffuse faster than SL and TFSA anions. The two oxygen atoms of the SL sulfonyl group tend to coordinate to two different neighboring Li ions and TFSA anions form ionic clusters with Li ions, verifying the previous observation of the unusual Li-ion conduction and its relevance to the SL- and anion-bridged, chainlike Li-ion coordination structure for the SL-based concentrated systems with other Li salts. Moreover, addition of hydrofluoroether (HFE) to the SL-based concentrated electrolytes greatly enhances diffusion coefficients but fragments the chainlike Li-ion coordination to smaller clusters, leading to a reduced contribution of Li-ion hopping to the overall Li-ion conduction. The SL-based concentrated electrolyte and its mixtures with HFE showed lower lithium polysulfide solubility and higher rate capability for lithium-sulfur (Li-S) cells compared with previously reported tetraglyme-based electrolytes. The SL-based electrolytes were found to manifest a significant improvement in Li-ion mass transfer as a sparingly solvating electrolyte, enabling the solid-state sulfur redox reactions in high-performance Li-S batteries.

全件表示 >>

総説・解説等 【 表示 / 非表示

  • Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries

    Thomas M.L., Hatakeyama-Sato K., Nanbu S., Yoshizawa-Fujita M.

    Energy Advances (Energy Advances)  2 ( 6 ) 748 - 764 2023年

    筆頭著者,  ISSN  2753-1457

     概要を見る

    The growing global demand for energy has led to the active development of efficient energy generation and storage technologies, driving the development of electrochemical devices such as high-energy density rechargeable batteries, fuel cells and solar cells. One of the essential materials for the development of high-performance electrochemical devices is the electrolyte. Currently, flammable electrolyte solutions are used, causing problems such as leakage and ignition incidents. It would be significant if the electrolyte could be replaced with a solid electrolyte, as this would eliminate these problems. In addition, with the increasing size of electrochemical devices, there is a societal demand for safer electrochemical devices, and the development of high-performance solid electrolytes is becoming more active. Although development has mainly focused on inorganic and solid polymer electrolytes, organic ionic plastic crystals (OIPCs) are beginning to attract attention as new candidates for flexible solid electrolytes. In this review, we describe OIPCs for lithium secondary batteries. Firstly, we introduce OIPCs and OIPC/polymer composites as lithium-ion conductors and discuss the effects of ionic architecture and polymer species on their ionic conduction. Secondly, we present recent progress in the development of lithium secondary batteries with OIPC-based solid electrolytes.

  • From ionic liquids to solvate ionic liquids: Challenges and opportunities for next generation battery electrolytes

    Watanabe M., Dokko K., Ueno K., Thomas M.

    Bulletin of the Chemical Society of Japan (Bulletin of the Chemical Society of Japan)  91 ( 11 ) 1660 - 1682 2018年11月

    最終著者,  ISSN  0009-2673

  • Phase behaviour and thermodynamics: General discussion

    Abbott A., Abe H., Aldous L., Atkin R., Bendová M., Busato M., Canongia Lopes J.N., Costa Gomes M., Cross B., Dietz C., Everts J., Firestone M., Gardas R., Gras M., Greaves T., Halstead S., Hardacre C., Harper J., Holbrey J., Jacquemin J., Jessop P., Macfarlane D., Maier F., Medhi H., Mezger M., Pádua A., Perkin S., Reid J.E.S.J., Saha S., Slattery J.M., Thomas M.L., Tiwari S., Tsuzuki S., Uralcan B., Watanabe M., Wishart J., Youngs T.

    Faraday Discussions (Faraday Discussions)  206   113 - 139 2018年01月

    ISSN  1359-6640

  • Electrochemistry: General discussion

    Abbott A., Aldous L., Borisenko N., Coles S., Fontaine O., Gamarra Garcia J.D., Gardas R., Hammond O., Hardwick L.J., Haumesser P.H., Hausen F., Horwood C., Jacquemin J., Jones R., Jónsson E., Lahiri A., Macfarlane D., Marlair G., May B., Medhi H., Paschoal V.H., Reid J.E.S.J., Schoetz T., Tamura K., Thomas M.L., Tiwari S., Uralcan B., Van Den Bruinhorst A., Watanabe M., Wishart J.

    Faraday Discussions (Faraday Discussions)  206   405 - 426 2018年01月

    ISSN  1359-6640

  • Ionic liquids at interfaces: General discussion

    Abbott A., Addicoat M., Aldous L., Bhuin R.G., Borisenko N., Canongia Lopes J.N., Clark R., Coles S., Costa Gomes M., Cross B., Everts J., Firestone M., Gardas R., Gras M., Halstead S., Hardacre C., Holbrey J., Itoh T., Ivaništšev V., Jacquemin J., Jessop P., Jones R., Kirchner B., Li S., Lynden-Bell R., Macfarlane D., Maier F., Mezger M., Pádua A., Pavel O.D., Perkin S., Purcell S., Rutland M., Slattery J.M., Suzer S., Tamura K., Thomas M.L., Tiwari S., Tsuzuki S., Uralcan B., Wallace W., Watanabe M., Wishart J.

    Faraday Discussions (Faraday Discussions)  206   549 - 586 2018年01月

    ISSN  1359-6640

全件表示 >>

研究発表 【 表示 / 非表示

  • Highly Concentrated Li⁺ Electrolytes with Molecular/Polymeric Diketones and Related Moieties

    トマス モーガン・レスリー

    Symposium on Functional Ionic Materials and Devices, 

    2022年09月

    口頭発表(一般), 柔粘性結晶研究会

  • Exploring Lithium-based Ionic Liquid and Concentrated Electrolyte Systems for Air and Sulfur Batteries

    M.L. Thomas, K. Ueno, K. Dokko, M. Watanabe

    ICACC (Daytona Beach, USA) , 

    2019年01月
    -
    2019年02月

    口頭発表(招待・特別), The American Ceramic Society

  • Enabling the Application of a Binary Solvate Ionic Liquid / CO₂ Binary Mixture as Electrolyte for Li-S Battery (oral and poster)

    Morgan L. Thomas, Yukiko Matsui, Kazuhide Ueno, Masashi Ishikawa, Kaoru Dokko, Masayoshi Watanabe

    APCIL-6 (鳥取、日本) , 

    2018年10月
    -
    2018年11月

    口頭発表(一般)

  • 溶媒和イオン液体/CO₂二元混合物電解液のリチウム硫黄電池適用 (日本語で発表)

    トマス モーガン・レスリー, 松井 由紀子, 上野 和英, 石川 正司, 獨古 薫, 渡邉 正義

    第9回イオン液体研究会 (鳥取、日本) , 

    2018年10月

    口頭発表(一般), イオン液体研究会

  • Electrochemical lithium deposition/dissolution in pressurized solvate ionic liquid/carbon dioxide mixtures

    M.L. Thomas, K. Watanabe, T. Makino, M. Kanakubo, K. Dokko, M. Watanabe

    232ᵗʰ Electrochemical Society Meeting (National Harbor, USA) , 

    2017年10月

    口頭発表(一般), The Electrochemical Society

全件表示 >>

知的財産権等 【 表示 / 非表示

  • 二次電池

    出願日: 特願2017-555010   

    特許権

受賞 【 表示 / 非表示

  • Green Chemistry Writing Competition

    Morgan L. THOMAS, 2006年, Crystal Faraday、英国

    受賞区分: その他,  受賞国: グレートブリテン・北アイルランド連合王国(英国)

  • Building Experience and Skill Travel Scholarship (BESTS)

    Morgan L. THOMAS, 2006年, ノッティンガム大学、英国

    受賞区分: その他,  受賞国: グレートブリテン・北アイルランド連合王国(英国)

  • Robert Bolland Memorial Prize

    Morgan L. THOMAS, 2004年, バース大学、英国

    受賞区分: その他,  受賞国: グレートブリテン・北アイルランド連合王国(英国)

     説明を見る

    Highest overall marks in Chemistry course

 

担当経験のある授業科目 【 表示 / 非表示

全件表示 >>

 

社会活動 【 表示 / 非表示

  • Demonstrator at RIKEN Open Day

    2013年04月

学術貢献活動 【 表示 / 非表示

  • External Reviewer of Doctoral Thesis (University of Valladolid)

    2019年04月

所属学協会 【 表示 / 非表示

  • イオン液体研究会, 

    2016年11月
    -
    継続中
  • 化学工学会, 

    2016年06月
    -
    継続中
  • The Electrochemical Society (ECS, 米国), 

    2014年03月
    -
    継続中
  • 日本化学会, 

    2012年12月
    -
    継続中
  • 電気化学会, 

    2012年11月
    -
    継続中

全件表示 >>