シュ, ウェイ (シュ ウェイ)

Xu, Wei

写真a

所属(所属キャンパス)

薬学部 薬科学科 分子創成化学講座 (芝共立)

職名

助教

 

論文 【 表示 / 非表示

  • A brief introduction to highly symmetric N-heteroarene-based macrocycles

    Xu W., Kumagai N.

    Tetrahedron (Tetrahedron)  141 2023年07月

    ISSN  00404020

     概要を見る

    Nitrogen-containing macrocycles have attracted sustained attention because of their fascinating structures and extensive applications in organic chemistry, therapeutic developments, and materials science. The nitrogen atoms in the macrocycles play important roles in the interaction with metal cations or small molecules, endowing their potential in catalysis, fluorescent sensors, and host–guest chemistry. In this context, herein we summarize highly symmetric nitrogen-containing N3/N4/N6 macrocycles comprising pyrroles, pyridines, quinolines, and (iso)indoles as key N-heteroarenes. The direct and indirect connectivity of N-heteroarene subunits allows for the construction of both flat and non-flat cyclic architectures. The synthesis, structure, and properties of these macrocycles are highlighted.

  • TEtraQuinolines: A Missing Link in the Family of Porphyrinoid Macrocycles

    Xu W., Nagata Y., Kumagai N.

    Journal of the American Chemical Society (Journal of the American Chemical Society)  145 ( 4 ) 2609 - 2618 2023年02月

    ISSN  00027863

     概要を見る

    Porphyrin contains four inwardly oriented nitrogen atoms. It is arguably the most ubiquitous multifunctional naturally occurring macrocycle that has inspired the design of novel nitrogen-containing heterocycles for decades. While cyclic tetramers of pyrrole, indole, and pyridine have been exploited as macrocycles in this category, quinoline has been largely neglected as a synthon. Herein, we report the synthesis of TEtraQuinoline (TEQ) as a ‘missing link’ in this N4 macrocycle family. In TEQs, four quinoline units are concatenated to produce an S4-symmetric architecture. TEQs are characterized by a highly rigid saddle shape, wherein the lone-pair orbitals of the four nitrogen atoms are not aligned in a planar fashion. Nevertheless, TEQs can coordinate a series of transition-metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+, and Pd2+). TEQs are inherently fluorescence-silent but become strongly emissive upon protonation or complexation of Zn(II) cations (ϕ = 0.71). TEQ/Fe(II) complexes can catalyze dehydrogenation and oxygenation reactions with catalyst loadings as low as 0.1 mol %.

  • Azo-tagged C4N4 fluorophores: unusual overcrowded structures and their application to fluorescent imaging

    Kohei M., Takizawa N., Tsutsumi R., Xu W., Kumagai N.

    Organic and Biomolecular Chemistry (Organic and Biomolecular Chemistry)  21 ( 14 ) 2889 - 2893 2023年01月

    ISSN  14770520

     概要を見る

    The C4N4 fluorophore is an intense fluorescence emitter featuring a 2,5-diaminopyrimidine core comprising four carbon and four nitrogen atoms. A series of C4N4 derivatives was photochemically dimerized at the 5-amino group, furnishing overcrowded orthotetraaryl-substituted diaryl azo compounds with a characteristic skewed structure revealed by X-ray crystallography. The photo-quenched azo-C4N4s are useful for fluorescently visualizing cells under hypoxic conditions.

  • Chemoselective Catalytic Dehydrogenation of Benzylic Amines Driven by the TEtraQuinoline/FeCl<inf>2</inf> Complex

    Nishiwaki M., Xu W., Kumagai N.

    Asian Journal of Organic Chemistry (Asian Journal of Organic Chemistry)  12 ( 9 )  2023年

    ISSN  21935807

     概要を見る

    A chemoselective dehydrogenation protocol for benzylic amines catalyzed by the TEtraQuinoline (TEQ)/FeCl2 complex is described. In combination with 2 equiv of tert-butyl hydroperoxide, as little as 0.1 mol% of catalyst loading was sufficient to convert primary and secondary benzylic amines to the corresponding imines and dimerized imines, respectively. Subsequent hydrolysis of the imines allowed for removal of the benzyl group on the nitrogen atom. Nonaromatic carbon-carbon multiple bonds and the O-Bn group remained intact in the present protocol, providing a complementary deprotection procedure to reductive removal conditions exerted by Pd catalysis.

  • Strategic Synthesis of Asymmetrically Substituted C4N4 Fluorophores

    Xu W., Kohei M., Shibasaki M., Kumagai N.

    Synthesis (Germany) (Synthesis (Germany))  53 ( 18 ) 3355 - 3360 2021年09月

    ISSN  00397881

     概要を見る

    C4N4 fluorophores comprise a recently disclosed new class of emissive organic molecules with modular synthetic capabilities. Herein, we report a new synthetic protocol toward asymmetrically di arylated C4N4 fluorescent materials. Direct monoarylation of 1-naphthol is exploited to suppress undesired diarylation and to provide a free phenolic hydroxy group for prospective linking to a molecule of interest. Installation of the second aromatic unit in order to acquire fluorescent properties is achieved by Suzuki-Miyaura cross-coupling.

競争的研究費の研究課題 【 表示 / 非表示

  • Strategic Exploration of Quinoline-Based Materials

    2022年04月
    -
    2024年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, XU Wei, 若手研究, 補助金,  研究代表者

 

担当授業科目 【 表示 / 非表示

  • 英語演習(薬科学科)

    2024年度

  • 早期体験学習(薬科学科)

    2024年度

  • 医薬品化学実習

    2024年度

  • 生理活性物質化学特論

    2024年度

  • 卒業研究(薬科学科)

    2024年度

全件表示 >>