Yoshioka, Kentaro

写真a

Affiliation

Faculty of Science and Technology, Department of Electronics and Electrical Engineering (Yagami)

Position

Assistant Professor/Senior Assistant Professor

Related Websites

 

Papers 【 Display / hide

  • Time-Based Current Source: A Highly Digital Robust Current Generator for Switched Capacitor Circuits

    K YOSHIOKA

    IEICE Transactions on Electronics, 2021CDP0002  2022

  • Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge

    W Bulten, K Kartasalo, PHC Chen, P Ström, H Pinckaers, K Nagpal, Y Cai, ...

    Nature medicine, 1-10  2022

  • VCO-Based Comparator: A Fully Adaptive Noise Scaling Comparator for High-Precision and Low-Power SAR ADCs

    K Yoshioka

    IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29 (12 … (IEEE Transactions on Very Large Scale Integration (VLSI) Systems)  29 ( 12 ) 2143 - 2152 2021.12

    ISSN  10638210

     View Summary

    A voltage-controlled oscillator (VCO)-based comparator that automatically adapts its noise performance reflecting the input voltage difference ( $\Delta V_{\text {in}}$ ) is presented. Such adaptive operation significantly reduces the power of high-precision comparators in successive-approximation-register (SAR) ADCs. $\Delta V_{\text {in}}$ is integrated as a time difference via the VCO, where the integration continues as long as the time difference is below a certain threshold, defined by the phase detector deadzone. Thus, when $\Delta V_{\text {in}}$ is large, the comparator operates as a low-power delay line-based comparator, and with small $\Delta V_{\text {in}}$ , the VCO oscillates to integrate the input signal and suppresses the comparator noise. The required oscillations to complete the comparison are inversely proportional to $\Delta V_{\text {in}}$ , realizing fully adaptive noise and power scaling. This article provides a detailed analysis and specific design guidelines of the VCO comparator. Moreover, the PVT drift tolerance and detailed circuit implementations are deeply discussed as well. For proof-of-concept, a 13-bit SAR ADC with the proposed VCO-based comparator was fabricated in 65-nm CMOS. By off-chip LMS calibration, the ADC achieves peak SNDR 66 dB at 1 MS/s with a peak FoM of 29 fJ/conv.-step.

  • Through the Looking Glass: Diminishing Occlusions in Robot Vision Systems with Mirror Reflections

    K Yoshioka, H Okuni, TT Ta, A Sai

    2021 IEEE/RSJ International Conference on Intelligent Robots and Systems … (IEEE International Conference on Intelligent Robots and Systems)     1578 - 1584 2021

    ISSN  21530858

     View Summary

    The quality of robot vision greatly affects the performance of automation systems, where occlusions stand as one of the biggest challenges. If the target is occluded from the sensor, detecting and grasping such objects become very challenging. For example, when multiple robot arms cooperate in a single workplace, occlusions will be created under the robot arm itself and hide objects underneath. While occlusions can be greatly reduced by installing multiple sensors, the increase in sensor costs cannot be ignored. Moreover, the sensor placements must be rearranged every time the robot operation routine and layout change.To diminish occlusions, we propose the first robot vision system with tilt-type mirror reflection sensing. By instantly tilting the sensor itself, we obtain two sensing results with different views: conventional direct line-of-sight sensing and non-line-of-sight sensing via mirror reflections. Our proposed system removes occlusions adaptively by detecting the occlusions in the scene and dynamically configuring the sensor tilt angle to sense the detected occluded area. Thus, sensor rearrangements are not required even after changes in robot operation or layout. Since the required hardware is the tilt-unit and a commercially available mirror, the cost increase is marginal. Through experiments, we show that our system can achieve a similar detection accuracy as systems with multiple sensors, regardless of the single-sensor implementation.

  • System and method

    K Yoshioka, H Okuni, A Sai

    US Patent App. 17/014,757  2021

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • サイバーとフィジカルを横断したセンサセキュリティ研究

    2022.10
    -
    2026.03

    JST, さきがけ, Commissioned research, Principal investigator

  • D3-AI: 多様性と環境変化に寄り添う分散機械学習基盤の創出

    2021.10
    -
    2026.03

    JST, CREST, Coinvestigator(s)

  • LiDAR based Sensing System Focused on Privacy Preserving and Occlusions

    2021.08
    -
    2023.03

    MEXT,JSPS, Grant-in-Aid for Scientific Research, Grant-in-Aid for Research Activity Start-up , Principal investigator

 

Courses Taught 【 Display / hide

  • TOPICS IN ELECTRONICS AND INFORMATION ENGINEERING

    2022

  • RECITATION IN ELECTRONICS AND INFORMATION ENGINEERING

    2022

  • LSI CIRCUIT DESIGN 2

    2022

  • LABORATORIES IN SCIENCE AND TECHNOLOGY

    2022

  • LABORATORIES IN ELECTRONICS AND INFORMATION ENGINEERING(1)

    2022

display all >>