松久 直司 (マツヒサ ナオジ)

Matsuhisa, Naoji

写真a

所属(所属キャンパス)

理工学部 電気情報工学科 (矢上)

職名

専任講師

メールアドレス

メールアドレス

HP

プロフィール 【 表示 / 非表示

  • 最新の研究成果はGoogle scholarをご覧ください。
    https://scholar.google.co.jp/citations?user=T-7aDjwAAAAJ&hl=ja

経歴 【 表示 / 非表示

  • 2017年04月
    -
    2017年05月

    東京大学, 電気系工学専攻, 研究員

  • 2017年05月
    -
    2019年03月

    南洋工科大学, 材料工学科, 研究員

  • 2017年08月
    -
    2019年03月

    スタンフォード大学, 化学工学科, 客員研究員

  • 2019年04月
    -
    2020年03月

    スタンフォード大学, 化学工学科, ポスドク研究員

  • 2019年04月
    -
    2020年03月

    日本学術振興会, 海外特別研究員

全件表示 >>

学歴 【 表示 / 非表示

  • 2008年04月
    -
    2012年03月

    東京大学, 工学部, 電子工学科

    日本, 大学, 卒業

  • 2012年04月
    -
    2014年03月

    東京大学, 大学院工学系研究科, 電気系工学専攻

    日本, 大学院, 修了, 修士

  • 2014年04月
    -
    2017年03月

    東京大学, 大学院工学系研究科, 電気系工学専攻

    日本, 大学院, 修了, 博士

学位 【 表示 / 非表示

  • 博士(工学), 東京大学大学院工学系研究科電気系工学専攻, 課程, 2017年03月

 

研究分野 【 表示 / 非表示

  • 電子デバイス・電子機器 (ストレッチャブルエレクトロニクス)

  • 電子・電気材料工学 (ソフトマテリアル)

 

論文 【 表示 / 非表示

  • All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring

    Nayeem M.O.G., Lee S., Jin H., Matsuhisa N., Jinno H., Miyamoto A., Yokota T., Someya T.

    Proceedings of the National Academy of Sciences of the United States of America (Proceedings of the National Academy of Sciences of the United States of America)  117 ( 13 ) 7063 - 7070 2020年03月

    研究論文(学術雑誌),  ISSN  00278424

     概要を見る

    © 2020 National Academy of Sciences. All rights reserved. The prolonged and continuous monitoring of mechanoacoustic heart signals is essential for the early diagnosis of cardiovascular diseases. These bodily acoustics have low intensity and low frequency, and measuring them continuously for long periods requires ultrasensitive, lightweight, gas-permeable mechanoacoustic sensors. Here, we present an all-nanofiber mechanoacoustic sensor, which exhibits a sensitivity as high as 10,050.6 mV Pa-1 in the lowfrequency region (<500 Hz). The high sensitivity is achieved by the use of durable and ultrathin (2.5 μm) nanofiber electrode layers enabling a large vibration of the sensor during the application of sound waves. The sensor is ultralightweight, and the overall weight is as small as 5 mg or less. The devices are mechanically robust against bending, and show no degradation in performance even after 1,000- cycle bending. Finally, we demonstrate a continuous long-term (10 h) measurement of heart signals with a signal-to-noise ratio as high as 40.9 decibels (dB).

  • A bioinspired stretchable membrane-based compliance sensor

    L Beker, N Matsuhisa, I You, SRA Ruth, S Niu, A Foudeh, JBH Tok, ...

    Proceedings of the National Academy of Sciences 117 (21), 11314-11320 (Proceedings of the National Academy of Sciences of the United States of America)  117 ( 21 ) 11314 - 11320 2020年

    研究論文(学術雑誌),  ISSN  0027-8424

     概要を見る

    © 2020 National Academy of Sciences. All rights reserved. Compliance sensation is a unique feature of the human skin that electronic devices could not mimic via compact and thin formfactor devices. Due to the complex nature of the sensing mechanism, up to now, only high-precision or bulky handheld devices have been used to measure compliance of materials. This also prevents the development of electronic skin that is fully capable of mimicking human skin. Here, we developed a thin sensor that consists of a strain sensor coupled to a pressure sensor and is capable of identifying compliance of touched materials. The sensor can be easily integrated into robotic systems due to its small form factor. Results showed that the sensor is capable of classifying compliance of materials with high sensitivity allowing materials with various compliance to be identified. We integrated the sensor to a robotic finger to demonstrate the capability of the sensor for robotics. Further, the arrayed sensor configuration allows a compliance mapping which can enable humanlike sensations to robotic systems when grasping objects composed of multiple materials of varying compliance. These highly tunable sensors enable robotic systems to handle more advanced and complicated tasks such as classifying touched materials.

  • Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures

    P Cai, C Wan, L Pan, N Matsuhisa, K He, Z Cui, W Zhang, C Li, J Wang, ...

    Nature Communications 11 (1), 1-12 (Nature Communications)  11 ( 1 )  2020年

    研究論文(学術雑誌)

     概要を見る

    © 2020, The Author(s). Coupling myoelectric and mechanical signals during voluntary muscle contraction is paramount in human–machine interactions. Spatiotemporal differences in the two signals intrinsically arise from the muscular excitation–contraction process; however, current methods fail to deliver local electromechanical coupling of the process. Here we present the locally coupled electromechanical interface based on a quadra-layered ionotronic hybrid (named as CoupOn) that mimics the transmembrane cytoadhesion architecture. CoupOn simultaneously monitors mechanical strains with a gauge factor of ~34 and surface electromyogram with a signal-to-noise ratio of 32.2 dB. The resolved excitation–contraction signatures of forearm flexor muscles can recognize flexions of different fingers, hand grips of varying strength, and nervous and metabolic muscle fatigue. The orthogonal correlation of hand grip strength with speed is further exploited to manipulate robotic hands for recapitulating corresponding gesture dynamics. It can be envisioned that such locally coupled electromechanical interfaces would endow cyber–human interactions with unprecedented robustness and dexterity.

  • High-Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology

    Matsuhisa Nooji, Jiang Ying, Liu Zhiyuon, Chen Geng, Wan Changjin, Kim Yeongin, Kang Jiheong, Tran Helen, Wu Hung-Chin, You Insang, Bao Zhenan, Chen Xiaodong

    ADVANCED ELECTRONIC MATERIALS (Advanced Electronic Materials)  5 ( 8 )  2019年08月

    研究論文(学術雑誌),  ISSN  2199-160X

     概要を見る

    © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim High-transconductance stretchable transistors are important for conformable and sensitive sensors for wearables and soft robotics. Remarkably high transconductance, which enables large amplification of signals, has been achieved through the use of organic electrochemical transistors (OECTs). However, the stretchability of such systems has been tempered by the lack of stretchable conductors with high stability in electrolytes, high conductance at high strain (100%), and process compatibility with active layers. Highly stretchable and strain-resistant Au conductors employed to fabricate intrinsically stretchable OECTs are demonstrated. Notably, the conductors exhibit a sheet resistance of 33.3 Ω Sq.−1 at 120% strain, the lowest reported value to date among stretchable Au thin film conductors. High-performance stretchable Au is realized by suppressing strain-induced microcrack propagation through control of the microcracks formed in deposited Au thin films. Then, the highly stretchable Au conductors are utilized to fabricate intrinsically stretchable OECTs with a high transconductance both at 0% strain (0.54 mS) and 140% strain (0.14 mS). Among previously reported systems, these OECTs show the highest transconductance at high strain (>50%). Finally, the high-performance OECTs are utilized in stretchable synaptic transistors, which are critically important for the development of soft neuromorphic computing systems to provide artificial intelligence for future soft robotics.

  • A wireless body area sensor network based on stretchable passive tags

    S Niu, N Matsuhisa, L Beker, J Li, S Wang, J Wang, Y Jiang, X Yan, Y Yun, ...

    Nature Electronics 2 (8), 361-368 (Nature Electronics)  2 ( 8 ) 361 - 368 2019年

    研究論文(学術雑誌),  ISSN  2520-1131

     概要を見る

    © 2019, The Author(s), under exclusive licence to Springer Nature Limited. A body area sensor network (bodyNET) is a collection of networked sensors that can be used to monitor human physiological signals. For its application in next-generation personalized healthcare systems, seamless hybridization of stretchable on-skin sensors and rigid silicon readout circuits is required. Here, we report a bodyNET composed of chip-free and battery-free stretchable on-skin sensor tags that are wirelessly linked to flexible readout circuits attached to textiles. Our design offers a conformal skin-mimicking interface by removing all direct contacts between rigid components and the human body. Therefore, this design addresses the mechanical incompatibility issue between soft on-skin devices and rigid high-performance silicon electronics. Additionally, we introduce an unconventional radiofrequency identification technology where wireless sensors are deliberately detuned to increase the tolerance of strain-induced changes in electronic properties. Finally, we show that our soft bodyNET system can be used to simultaneously and continuously analyse a person’s pulse, breath and body movement.

全件表示 >>

受賞 【 表示 / 非表示

  • 井上研究奨励賞

    2019年02月, 井上科学振興財団

    受賞区分: 国内外の国際的学術賞

  • Student Poster Award

    2016年09月, 2016 International Conference on Flexible and Printed Electronics (ICFPE)

    受賞区分: 国際学会・会議・シンポジウム等の賞

  • Innovative Technologies 2015審査員特別賞”Human”(ダブル受賞)

    2015年10月, 経済産業省

    受賞区分: その他の賞

  • Innovative Technologies 2015審査員特別賞”Industry”(ダブル受賞)

    2015年10月, 経済産業省

    受賞区分: その他の賞

 

担当授業科目 【 表示 / 非表示

  • 固体物性工学

    2020年度

  • 電気情報工学輪講

    2020年度

  • 理工学基礎実験

    2020年度

  • 電気情報工学実験第1

    2020年度

  • 卒業研究

    2020年度