金井 昭夫 (カナイ アキオ)

Kanai, Akio

写真a

所属(所属キャンパス)

環境情報学部 (湘南藤沢)

職名

教授

メールアドレス

メールアドレス

HP

外部リンク

プロフィール 【 表示 / 非表示

  • 略歴:1985年 早稲田大学教育学部理学科生物学専修卒業。87年同大学大学院理工学研究科修士課程物理学及び応用物理学専攻修了。90年東京大学大学院薬学系研究科博士課程生命薬学専攻修了。90年米国国立衛生研究所 (米国NIH)博士訪問研究員、92年東京都臨床医学総合研究所研究員、96年科学技術振興事業団ERATOプロジェクトグループリーダー、技術参事を経て、2001年より慶應義塾大学先端生命科学研究所助教授。2006年より慶應義塾大学先端生命科学研究所・教授(同・環境情報学部・教授)。

教員からのメッセージ 【 表示 / 非表示

  • 学部や大学院学生の教育について
     RNA研究プロジェクトが目指すのは考えられる人材の創出です。これを学生時代にきちんと学ぶ必要があります。極端な言い方をすれば、実験技術は、正確に習得出来さえすれば、どこで誰から学んでも問題ではありません。大切なのは、何を研究するのか、困った時にどうするか、どう展開していくのかということをきちんと考えられるようになることです。RNA研究グループ内では、学生の各々のテーマを通して、他のグループの大学院生ならば、私の大学院の授業である「先端分子細胞生物学」の演習を通して、このことに言及したいと思っています。実際、私のグループで大腸菌RNAの基礎研究を行った学生が、企業では、がんの研究に従事していたりします。また、アカデミアで応用の研究に従事している者もいます。すなわち、学生時代のテーマに縛られずに研究を展開していけるようにすることが重要であると判断しています。

総合紹介 【 表示 / 非表示

  • 遺伝情報の流れとしてDNA→RNA→蛋白質(セントラルドグマ)が提唱されたのは60年も前のことです。この考え方は基本軸として揺るがないでしょうが、1970-80年代における、逆転写酵素や酵素活性を有したRNA (リボザイム)の発見等で、その修正を要求されてきました。また、21世紀になってから極めて沢山のNon-coding RNAが発見されたことで、セントラルドグマにおけるRNA分子そのものの働きが無視できない状況になってきました。本プロジェクトでは、遺伝子制御に関わる機能性RNAやRNA結合蛋白質およびRNA関連酵素に焦点をあて、RNAレベルで制御される新しいメカニズムの解明を目的とします。またこの研究を通して、遺伝情報制御および成立過程に関わる分子進化的な考察を行います。さらに、これらの知見を基盤として、生命の起源、進化、遺伝子制御について考察していきます。

経歴 【 表示 / 非表示

  • 1990年10月
    -
    1992年10月

    米国国立衛生研究所(NIH) ,博士訪問研究員

  • 1992年11月
    -
    1996年03月

    (財)東京都臨床医学総合研究所 ,研究員

  • 1996年04月
    -
    2001年03月

    科学技術振興事業団ERATOプロジェクトグループリーダー及び技術参事

  • 2001年04月
    -
    2006年03月

    大学助教授(有期)(環境情報学部・先端生命科学研究所)

  • 2006年04月
    -
    継続中

    大学教授(環境情報学部・先端生命科学研究所)

学歴 【 表示 / 非表示

  • 1985年03月

    早稲田大学, 教育学部

    大学, 卒業

  • 1987年03月

    早稲田大学, 理工学研究科

    大学院, 修了, 修士

  • 1990年03月

    東京大学, 薬学系研究科, 生命薬学専攻

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 薬学 , 東京大学, 1990年03月

 

研究分野 【 表示 / 非表示

  • ゲノム生物学

  • 分子生物学 (Molecular Biology)

  • 進化生物学

研究キーワード 【 表示 / 非表示

  • ノンコーディングRNA、転移RNA、アーキア(古細菌)、RNA関連酵素、遺伝暗号

研究テーマ 【 表示 / 非表示

  • (1) RNA-binding proteins & RNA-related enzymes (2) Non-coding RNAs (3) microRNAs (4) Sense-antisense gene regulation (5) DNA replication (primer RNA processing) (6) Post-transcriptional RNA processing (7) Cell differentiation & Aging (8) Molecular evolution, 

    2001年
    -
    継続中

 

著書 【 表示 / 非表示

全件表示 >>

論文 【 表示 / 非表示

  • Proteomic and metabolomic analyses uncover sex-specific regulatory pathways in mouse fetal germline differentiation

    Hayashi, Y., Mori, M., Igarashi, K., Tanaka, K., Takehara, A., Ito-Matsuoka, Y., Kanai, A., Yaegasgi, N., Soga, T. and Matsui, Y.

    Biology of Reproduction (Oxford University Press)  2020年07月

    研究論文(学術雑誌), 査読有り

  • Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens.

    Vu, T.-D., Iwasaki, Y., Shigenobu, S., Maruko, A., Oshima, K., Iioka E., Huang, C.-L., Abe, T., Tamaki, S., Lin, Y.-W., Chen, C.-K., Lu, M.-Y., Hojo, M., Wang, H.-V., Tzeng, S.-F., Huang, H.-J., Kanai, A., Gojobori, T., Chiang, T.-Y., Sun, H. S., Li, W.-H., and Okada, N.

    PLOS Genetics (PLOS)  2020年06月

    研究論文(学術雑誌), 査読有り

  • Editorial: Current Advances in the Research of RNA Regulatory Enzymes

    Kanai, A. and Yoshihisa, T.

    Frontiers in Genetics (Frontiers)  10 ( 973 )  2019年10月

    研究論文(学術雑誌), 共著, 査読有り

  • Large-Scale Molecular Evolutionary Analysis Uncovers a Variety of Polynucleotide Kinase Clp1 Family Proteins in the Three Domains of Life

    Saito M., Sato A., Nagata S., Tamaki S., Tomita M., Suzuki H., Kanai A.

    Genome Biology and Evolution (Genome Biology and Evolution)  11 ( 10 ) 2713 - 2726 2019年09月

    研究論文(学術雑誌), 査読有り

     概要を見る

    © 2019 The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. Clp1, a polyribonucleotide 5′-hydroxyl kinase in eukaryotes, is involved in pretRNA splicing and mRNA 3′-end formation. Enzymes similar in amino acid sequence to Clp1, Nol9, and Grc3, are present in some eukaryotes and are involved in prerRNA processing. However, our knowledge of how these Clp1 family proteins evolved and diversified is limited. We conducted a large-scale molecular evolutionary analysis of the Clp1 family proteins in all living organisms for which protein sequences are available in public databases. The phylogenetic distribution and frequencies of the Clp1 family proteins were investigated in complete genomes of Bacteria, Archaea and Eukarya. In total, 3,557 Clp1 family proteins were detected in the three domains of life, Bacteria, Archaea, and Eukarya. Many were from Archaea and Eukarya, but a few were found in restricted, phylogenetically diverse bacterial species. The domain structures of the Clp1 family proteins also differed among the three domains of life. Although the proteins were, on average, 555 amino acids long (range, 196-2,728), 122 large proteins with >1,000 amino acids were detected in eukaryotes. These novel proteins contain the conserved Clp1 polynucleotide kinase domain and various other functional domains. Of these proteins, >80% were from Fungi or Protostomia. The polyribonucleotide kinase activity of Thermus scotoductus Clp1 (Ts-Clp1) was characterized experimentally. Ts-Clp1 preferentially phosphorylates single-stranded RNA oligonucleotides (Km value for ATP, 2.5 μM), or single-stranded DNA at higher enzyme concentrations. We propose a comprehensive assessment of the diversification of the Clp1 family proteins and the molecular evolution of their functional domains.

  • Systematic analysis of the binding surfaces between tRNAs and their respective aminoacyl tRNA synthetase based on structural and evolutionary data

    Tamaki S., Tomita M., Suzuki H., Kanai A.

    Frontiers in Genetics (Frontiers in Genetics)  8 ( 227 )  2018年01月

    研究論文(学術雑誌), 査読有り

     概要を見る

    © 2018 Tamaki, Tomita, Suzuki and Kanai. To determine the mechanism underlying the flow of genetic information, it is important to understand the relationship between a tRNA and its binding enzyme, a member of the aminoacyl-tRNA synthetase (aaRS) family. We have developed a novel method to project the interacting regions of tRNA-aaRS complexes, obtained from their three-dimensional structures, onto two-dimensional space. The interacting surface between each tRNA and its aaRS was successfully identified by determining these interactions with an atomic distance threshold of 3.3 Å. We analyzed their interactions, using 60 mainly bacterial and eukaryotic tRNA-aaRS complexes, and showed that the tRNA sequence regions that interacted most strongly with each aaRS are the anticodon loop and the CCA terminal region, followed by the D-stem. A sequence conservation analysis of the canonical tRNAs was conducted in 83 bacterial, 182 archaeal, and 150 eukaryotic species. Our results show that the three tRNA regions that interact with the aaRS and two additional loop regions (D-loop and TψC-loop) known to be important for formation of the tRNA L-shaped structure are broadly conserved. We also found sequence conservations near the tRNA discriminator in the Bacteria and Archaea, and an enormous number of noncanonical tRNAs in the Eukaryotes. This is the first global view of tRNA evolution based on its structure and an unprecedented number of sequence data.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

総説・解説等 【 表示 / 非表示

競争的資金等の研究課題 【 表示 / 非表示

  • 微生物生態系による原子炉内物体の腐食・変質に関する評価研究

    2019年10月
    -
    2020年12月

    文部科学省, 英知を結集した原子力科学技術・人材育成事業 国際協力型廃炉研究プログラム(廃炉加速化研究プログラム), 金井昭夫, Elena Shagimardanova, 補助金,  代表

     研究概要を見る

    高放射能環境でも一部の微生物は繁殖する。また、高放射能に繰り返し曝されることにより、放射能耐性を獲得する。福島第一原子力発電所(1F)事故では、定常的に微生物を含んだ地下水が流れ込んでおり、その内部に微生物群集が形作られている可能性が高い。このことから、1F敷地内外の地下水や放射能汚染水のメタゲノム解析により、それらの微生物群集の実態(生物種の群集構造と発現遺伝子プロファイル)を明らかにする。微生物群集の代謝反応経路を推定することにより、微生物生態系の原子炉内構造物に対する影響を調べ、微生物により燃料デブリや構造材(コンクリート、鉄材など)の腐食・変性が促進される可能性を検討する。それらを基に、微生物群集の制御に関する指針を提案するとともに、定常的な生物環境モニタリングのための拠点形成を進める。

  • 多様性を有するRNAキナーゼの進化情報解析とその情報に基づいた酵素機能の改変

    2017年04月
    -
    2020年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 金井 昭夫, 基盤研究(C), 補助金,  代表

受賞 【 表示 / 非表示

  • 「平成29年度『科研費』審査委員」表彰

    金井昭夫, 2017年09月, 独立行政法人 日本学術振興会

    受賞国: 日本

     説明を見る

    科学研究費助成事業の審査に関し、有意義な審査意見を付したことによる

 

担当授業科目 【 表示 / 非表示

  • 特別研究プロジェクトB

    2020年度

  • 研究会B

    2020年度

  • 修士研究会

    2020年度

  • 特別研究

    2020年度

  • 卒業プロジェクト2

    2020年度

全件表示 >>

担当経験のある授業科目 【 表示 / 非表示

  • 先端分子細胞生物学

    慶應義塾, 2018年度, 秋学期, 専門科目

  • 先端研究 (BI)

    慶應義塾, 2018年度, 秋学期

  • ゲノム分子生物学2

    慶應義塾, 2018年度, 秋学期, 専門科目

  • 概念構築 (BI)

    慶應義塾, 2018年度, 春学期, 専門科目

  • ゲノム分子生物学1

    慶應義塾, 2018年度, 春学期, 専門科目, 講義

全件表示 >>

 

所属学協会 【 表示 / 非表示

  • RNA Society

     
  • American Association for the Advancement of Science (AAAS)

     
  • American Society for Microbiology (ASM)

     
  • 日本分子生物学会

     
  • 日本生化学会

     

全件表示 >>