Yahagi, Naohisa

写真a

Affiliation

Graduate School of Media and Governance (Shonan Fujisawa)

Position

Professor

External Links

Career 【 Display / hide

  • 2004.04
    -
    2007.09

    横浜市立市民病院, 小児科, 医務職員

  • 2007.10
    -
    2011.09

    国立成育医療研究センター, 治験管理室, 臨床研究フェロー

  • 2011.10
    -
    2013.03

    国立成育医療研究センター, 治験ネットワーク推進室, 専門職

  • 2013.04
    -
    2015.03

    National Center for Child Health and Development, Clinical Research Network Management Office, Assistant Director

  • 2015.04
    -
    2016.09

    National Center for Child Health and Development, Division for Data Science and System Strategy, Deputy Manager

display all >>

Academic Background 【 Display / hide

  • 1994.04
    -
    2000.03

    Keio University, 医学部

    University, Graduated, Master's course

  • 2000.04
    -
    2004.03

    Keio University, 医学研究科

    Graduate School, Completed, Doctoral course

Academic Degrees 【 Display / hide

  • 学士(医学), Keio University, Coursework, 2000.03

  • 博士号(医学), Keio University, Coursework, 2004.03

Licenses and Qualifications 【 Display / hide

  • 医師免許証, 2000.04

  • 小児科専門医, 2008.05

  • 認定小児科指導医, 2016.12

 

Research Areas 【 Display / hide

  • Humanities & Social Sciences / Business administration (Strategy)

  • Social Infrastructure (Civil Engineering, Architecture, Disaster Prevention) / Social systems engineering (ヘルスケアシステムデザイン)

  • Life Science / Embryonic medicine and pediatrics

  • Life Science / Medical systems (clinical informatics)

Research Keywords 【 Display / hide

  • Clinical Informatics

  • Strategy for value-based healthcare delivery

 

Books 【 Display / hide

  • 2050年の入試問題

    神成淳司,田中浩也,脇田 玲,矢作尚久,安宅和人,池澤 あやか,石川将也,大山エンリコイサム,たかまつなな,清水唯一朗,一青窈,本城慎之介, 日本経済新聞出版, 2022.03

  • 競争優位に導く業務改善とイノベーション

    矢作尚久, 日本医療企画, 2022.02

  • 小児救急トリアージテキスト

    伊藤龍子,矢作尚久, 医歯薬出版, 2010.03

Papers 【 Display / hide

  • Novel Approach for Detecting Respiratory Syncytial Virus in Pediatric Patients Using Machine Learning Models Based on Patient-Reported Symptoms: Model Development and Validation Study

    Shota Kawamoto, Yoshihiko Morikawa, Naohisa Yahagi

    JMIR FORMATIVE RESEARCH  2024.04

    Research paper (scientific journal), Last author, Corresponding author, Accepted

     View Summary

    Background: Respiratory syncytial virus (RSV) affects children, causing serious infections, particularly in high-risk groups.
    Given the seasonality of RSV and the importance of rapid isolation of infected individuals, there is an urgent need for more efficient diagnostic methods to expedite this process.
    Objective: This study aimed to investigate the performance of a machine learning model that leverages the temporal diversity of symptom onset for detecting RSV infections and elucidate its discriminatory ability.
    Methods: The study was conducted in pediatric and emergency outpatient settings in Japan. We developed a detection model that remotely confirms RSV infection based on patient-reported symptom information obtained using a structured electronic template incorporating the differential points of skilled pediatricians. An extreme gradient boosting–based machine learning model was developed using the data of 4174 patients aged ≤24 months who underwent RSV rapid antigen testing. These patients visited either the pediatric or emergency department of Yokohama City Municipal Hospital between January 1, 2009, and December 31, 2015. The primary outcome was the diagnostic accuracy of the machine learning model for RSV infection, as determined by rapid antigen testing, measured using the area under the receiver operating characteristic curve. The clinical efficacy was evaluated by calculating the discriminative performance based on the number of days elapsed since the onset of the first symptom and exclusion rates based on thresholds of reasonable sensitivity and specificity.
    Results: Our model demonstrated an area under the receiver operating characteristic curve of 0.811 (95% CI 0.784-0.833) with good calibration and 0.746 (95% CI 0.694-0.794) for patients within 3 days of onset. It accurately captured the temporal evolution of symptoms; based on adjusted thresholds equivalent to those of a rapid antigen test, our model predicted that 6.9% (95% CI 5.4%-8.5%) of patients in the entire cohort would be positive and 68.7% (95% CI 65.4%-71.9%) would be negative. Our model could eliminate the need for additional testing in approximately three-quarters of all patients.
    Conclusions: Our model may facilitate the immediate detection of RSV infection in outpatient settings and, potentially, in home environments. This approach could streamline the diagnostic process, reduce discomfort caused by invasive tests in children, and allow rapid implementation of appropriate treatments and isolation at home. The findings underscore the potential of machine learning in augmenting clinical decision-making in the early detection of RSV infection.

  • Effectiveness of Clinical Management of COVID-19 Based on Structured Clinical Knowledge and Process Paths

    Tsuru S, Tamamoto T, Nakao A, Machida Y, Tanizaki K, Yahagi N.

    Studies in Health Technology and Informatics 310   359 - 363 2024.01

    Research paper (scientific journal), Last author, Accepted

  • The Impact of Cold Ambient Temperature in the Pattern of Influenza Virus Infection

    Eri M, Shota K, Yoshihiko M, Naohisa Y

    Open Forum Infectious Diseases (Oxford University Press)  10 ( 2 ) 1 - 6 2023.01

    Research paper (scientific journal), Joint Work, Last author, Corresponding author, Accepted

     View Summary

    Abstract
    Background: Prior literature suggests that cold temperature strongly influences the immune function of animals and human behaviors, which may allow for the transmission of respiratory viral infections. However, information on the impact of cold stimuli, especially the impact of temporal change in the ambient temperature on influenza virus transmission, is limited.
    Methods: A susceptible-infected-recovered-susceptible model was applied to evaluate the effect of temperature change on influenza virus transmission.
    Results: The mean temperature of the prior week was positively associated with the number of newly diagnosed cases (0.107 [95% Bayesian credible interval {BCI}, .106-.109]), whereas the mean difference in the temperature of the prior week was negatively associated (-0.835 [95% BCI, -.840 to -.830]). The product of the mean temperature and mean difference in the temperature of the previous week were also negatively associated with the number of newly diagnosed cases (-0.192 [95% BCI, -.197 to -.187]).
    Conclusions: The mean temperature and the mean difference in temperature affected the number of newly diagnosed influenza cases differently. Our data suggest that high ambient temperature and a drop in the temperature and their interaction increase the risk of infection. Therefore, the highest risk of infection is attributable to a steep fall in temperature in a relatively warm environment.
    Keywords: SIRS model; cold stimuli; influenza.

  • Patient Data Sharing and Reduction of Overtime Work of Nurses by Innovation of Nursing Records Using Structured Clinical Knowledge

    Satoko Tsuru, Tetsuro Tamamoto, Akihiro Nakao, Kouichi Tanizaki, Naohisa Yahagi

    Studies in Health Technology and Informatics 294   525 - 529 2022.05

    Research paper (scientific journal), Joint Work, Last author, Accepted

  • 脳血管疾患後のリハビリテーションにおける標準的なリハビリ計画作成手法の開発

    加藤省吾,水流聡子,井手睦,進藤晃, 矢作尚久, 山田秀

    日本臨床知識学会誌 2   44 - 45 2021

    Research paper (scientific journal), Joint Work, Accepted

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • 診療支援システムの実際の運用(小児科)

    森田英明, 矢作尚久

    小児科診療 (診断と治療社)  85 ( 12 ) 1605 - 1612 2022.12

    Article, review, commentary, editorial, etc. (other), Last author, Corresponding author

  • 診療支援システムの全体構想

    森川和彦, 矢作尚久

    小児科診療 (診断と治療社)  85 ( 12 ) 1595 - 1603 2022.12

    Article, review, commentary, editorial, etc. (other), Joint Work, Last author, Corresponding author

  • 小児医療における情報収集システムの整備

    加藤省吾, 矢作尚久

    小児科診療 (診断と治療社)  85 ( 12 ) 1583 - 1587 2022.12

    Article, review, commentary, editorial, etc. (other), Joint Work, Last author, Corresponding author

  • 医療情報の利活用の現状と問題

    藤井進, 坂野哲平, 矢作尚久

    小児科診療 (診断と治療社)  85 ( 12 ) 1501 - 1513 2022.12

    Article, review, commentary, editorial, etc. (other), Joint Work, Last author, Corresponding author

  • 競争戦略としての「医療のDX」イノベーション

    矢作尚久,藤井進,森川和彦,川本章太, 加藤省吾

    研究 技術 計画 36 ( 1 )  2021

    Article, review, commentary, editorial, etc. (scientific journal), Joint Work, Lead author, Corresponding author

display all >>

Presentations 【 Display / hide

  • The Potential in Structured Process for Dysphagia Rehabilitation after Cerebrovascular Diseases

    Shogo Kato, Satoko Tsuru, Makoto Ide, Akira Shindo, Naohisa Yahagi, Shu Yamada

    Proc. of the AMIA 2022 Informatics Summit, 

    2022.03

    Oral presentation (general)

  • 寒冷刺激が人体の免疫応答に与える影響を組み込んだ ウィルス感染症の流行シミュレーションモデルの構築

    川本章太, 加藤省吾, 宮本佳明, 森川 和彦, 矢作 尚久

    化学工学会第52回秋季大会要旨集, VE123, 

    2021.09

    Oral presentation (general)

  • CONTINUOUS STANDARDIZATION OF REHABILITATION AFTER CEREBROVASCULAR DISEASES

    Shogo Kato, Satoko Tsuru, Makoto Ide, Akira Shindo, Naohisa Yahagi, Shu Yamada

    Proc. of the 64th EOQ Congress, 

    2021.06

    Oral presentation (general)

  • The Potential in Standardized Process for Dysphagia Rehabilitation after Cerebrovascular Diseases

    Shogo Kato, Satoko Tsuru, Makoto Ide, Akira Shindo, Naohisa Yahagi, Shu Yamada

    AMIA 2021 Informatics Summit, web, 

    2021

    Oral presentation (general)

  • 医薬をシステム視点で俯瞰する -診療プロセスの技術化による医療の再定義-

    矢作尚久

    化学工学会 第51回秋季大会, 

    2020

    Oral presentation (invited, special)

display all >>

Research Projects of Competitive Funds, etc. 【 Display / hide

  • Development of medical equipment for medical support system for newborns to improve neonatal mortality in developing and emerging countries

    2024.08
    -
    2027.03

    Research grant, Coinvestigator(s)

  • 医療機関・在宅・介護施設を横断する脳血管疾患リハビリの標準計画作成手法の開発

    2022.04
    -
    2027.03

    日本学術振興会, Research grant, Coinvestigator(s)

  • 新生児診療支援システムを用いた診療・特定認定看護師の臨床推論力の向上に関する研究

    2022.04
    -
    2025.03

    Research grant, Coinvestigator(s)

  • パンデミック治療薬の迅速生産支援システムの構築

    2021
    -
    2024

    日本学術振興会, 科学研究費助成事業, Research grant, Coinvestigator(s)

  • 医療の質に資する分析を可能とするデータの質・構造の評価研究

    2021

    一般財団法人医療保険業務研究協会, Commissioned research, Other

display all >>

Awards 【 Display / hide

  • 経済産業省令和3年度国際標準化貢献者表彰(産業技術環境局長表彰)

    2021

    Type of Award: Other

  • SFC Faculty Award(教育分野)

    2020

    Type of Award: Keio commendation etc.

  • 国際新生児学会優秀演題賞

    2009

    Type of Award: Award from international society, conference, symposium, etc.

  • 日本救急小児科学会優秀賞

    2005

    Type of Award: Award from Japanese society, conference, symposium, etc.

 

Courses Taught 【 Display / hide

  • SEMINAR B

    2024

  • MASTER SEMINAR

    2024

  • INDEPENDENT RESEARCH

    2024

  • GRADUATION PROJECT 2

    2024

  • GRADUATION PROJECT 1

    2024

display all >>

 

Academic Activities 【 Display / hide

  • 情報処理学会誌

    2020
    -
    Present

  • American Medical Informatics Association

    2018
    -
    Present

Committee Experiences 【 Display / hide

  • 2020
    -
    Present

    公益財団法人日本学校保健会 成長曲線普及推進委員

  • 2020
    -
    Present

    情報処理学会誌 Reviewer

  • 2019
    -
    Present

    内閣官房健康・医療戦略室標準的医療情報システムに関する検討会 構成員

  • 2019
    -
    Present

    国立研究開発法人 日本医療研究開発機構 課題評価委員

  • 2018
    -
    Present

    American Medical Informatics Association Reviewew

display all >>