曽我 幸平 (ソガ コウヘイ)

Soga Kohei

写真a

所属(所属キャンパス)

理工学部 数理科学科 (矢上)

職名

准教授

 

論文 【 表示 / 非表示

  • Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations

    Kohei Soga

    Numerische Mathematik (Springer)  2024年07月

    研究論文(学術雑誌), 単著, 筆頭著者, 最終著者, 責任著者, 査読有り

  • Existence of global weak solutions of inhomogeneous incompressible Navier–Stokes system with mass diffusion

    Kacedan E., Soga K.

    Zeitschrift fur Angewandte Mathematik und Physik (Zeitschrift fur Angewandte Mathematik und Physik)  75 ( 2 )  2024年04月

    ISSN  00442275

     概要を見る

    This paper proves existence of a global weak solution to the inhomogeneous (i.e., non-constant density) incompressible Navier–Stokes system with mass diffusion. The system is well-known as the Kazhikhov–Smagulov model. The major novelty of the paper is to deal with the Kazhikhov–Smagulov model possessing the non-constant viscosity without any simplification of higher order nonlinearity. Every global weak solution is shown to have a long time behavior that is consistent with mixing phenomena of miscible fluids. The results also contain a new compactness method of Aubin–Lions–Simon type.

  • Mathematical analysis of modified level-set equations

    Bothe D., Fricke M., Soga K.

    Mathematische Annalen (Mathematische Annalen)  2024年

    ISSN  00255831

     概要を見る

    The linear transport equation allows to advect level-set functions to represent moving sharp interfaces in multiphase flows as zero level-sets. A recent development in computational fluid dynamics is to modify the linear transport equation by introducing a nonlinear term to preserve certain geometrical features of the level-set function, where the zero level-set must stay invariant under the modification. The present work establishes mathematical justification for a specific class of modified level-set equations on a bounded domain, generated by a given smooth velocity field in the framework of the initial/boundary value problem of Hamilton–Jacobi equations. The first main result is the existence of smooth solutions defined in a time-global tubular neighborhood of the zero level-set, where an infinite iteration of the method of characteristics within a fixed small time interval is demonstrated; the smooth solution is shown to possess the desired geometrical feature. The second main result is the existence of time-global viscosity solutions defined in the whole domain, where standard Perron’s method and the comparison principle are exploited. In the first and second main results, the zero level-set is shown to be identical with the original one. The third main result is that the viscosity solution coincides with the local-in-space smooth solution in a time-global tubular neighborhood of the zero level-set, where a new aspect of localized doubling the number of variables is utilized.

  • A Remark on Tonelli’s Calculus of Variations

    Soga K.

    Russian Journal of Nonlinear Dynamics (Russian Journal of Nonlinear Dynamics)  19 ( 2 ) 239 - 248 2023年

    ISSN  26585324

     概要を見る

    This paper provides a quite simple method of Tonelli’s calculus of variations with positive definite and superlinear Lagrangians. The result complements the classical literature of calculus of variations before Tonelli’s modern approach. Inspired by Euler’s spirit, the proposed method employs finite-dimensional approximation of the exact action functional, whose minimizer is easily found as a solution of Euler’s discretization of the exact Euler – Lagrange equation. The Euler – Cauchy polygonal line generated by the approximate minimizer converges to an exact smooth minimizing curve. This framework yields an elementary proof of the existence and regularity of minimizers within the family of smooth curves and hence, with a minor additional step, within the family of Lipschitz curves, without using modern functional analysis on absolutely continuous curves and lower semicontinuity of action functionals.

  • Hamilton-Jacobi方程式に対する有限差分法の数学解析―確率論と変分法を用いた枠組―

    曽我幸平

    学会誌「応用数理」 (日本応用数理学会)  32 ( 3 ) 127 - 138 2022年09月

    研究論文(学術雑誌), 単著, 筆頭著者, 査読有り

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

研究発表 【 表示 / 非表示

  • A Finite Difference Method in Hamilton-Jacobi Equations and Weak KAM Theory

    Kohei Soga

    12th AIMS Conference in Taipei (Taiwan ) , 

    2018年07月

    口頭発表(招待・特別)

  • On convergence of Chorin's projection method to a Leray-Hopf weak solution -Bounded Lipschitz domain case-

    Kohei Soga

    Conference on Mathematical Fluid Dynamics Bad Boll (Germany) , 

    2018年05月

    口頭発表(招待・特別)

  • ハミルトン・ヤコビ方程式のディスカウント近似に対する選択問題:収束率

    曽我 幸平

    日本数学会2017年度年会 (首都大学東京) , 

    2017年03月

    口頭発表(一般)

  • 弱KAM理論の応用1 ーHJ方程式の放物型近似・差分近似・discount近似と対応する力学系

    曽我 幸平

    RIMS研究集会: 力学系とその関連分野の連携探索 (京都大学) , 

    2016年06月

    口頭発表(招待・特別)

  • 古典KAM理論・弱KAM理論入門

    曽我 幸平

    RIMS研究集会: 力学系とその関連分野の連携探索 (京都大学) , 

    2016年06月

    口頭発表(招待・特別)

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 流体力学における数値解法の数学解析と解析力学における古典KAM理論の数学解析

    2022年04月
    -
    2027年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 曽我 幸平, 基盤研究(C), 補助金,  研究代表者

  • 力学系・流体力学の応用解析的研究

    2018年04月
    -
    2022年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 曽我 幸平, 若手研究, 補助金,  研究代表者

  • 応用解析としての非線形問題の研究

    2015年04月
    -
    2019年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 曽我 幸平, 若手研究(B), 補助金,  研究代表者

 

担当授業科目 【 表示 / 非表示

  • 数学3B

    2024年度

  • 数学3A

    2024年度

  • 数学解析第2

    2024年度

  • 基礎理工学課題研究

    2024年度

  • 基礎理工学特別研究第2

    2024年度

全件表示 >>

担当経験のある授業科目 【 表示 / 非表示

  • 関数論第1同演習

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期

  • 数学解析第2

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期

  • 関数方程式第1同演習

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期