山本 直樹 (ヤマモト ナオキ)

Yamamoto, Naoki

写真a

所属(所属キャンパス)

理工学部 物理情報工学科 (矢上)

職名

教授

HP

経歴 【 表示 / 非表示

  • 2003年04月
    -
    2007年03月

    日本学術振興会, 特別研究員

  • 2004年07月
    -
    2007年02月

    California Institute of Technology, Department of Physics, Postdoctral Fellow

  • 2007年04月
    -
    2008年03月

    Australian National University, Department of Engineering, Postdoctral Fellow

  • 2008年04月
    -
    2011年03月

    慶應義塾大学, 理工学部・物理情報工学科, 専任講師

  • 2011年04月
    -
    2019年03月

    慶應義塾大学, 理工学部・物理情報工学科, 准教授

全件表示 >>

学歴 【 表示 / 非表示

  • 1999年03月

    東京大学, 工学部, 計数工学科

    大学, 卒業

  • 2004年03月

    東京大学, 情報理工学系研究科, システム情報学専攻

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 情報理工学, 東京大学, 課程, 2004年03月

 

研究分野 【 表示 / 非表示

  • 自然科学一般 / 応用数学、統計数学 (量子計算、量子情報)

  • ものづくり技術(機械・電気電子・化学工学) / 制御、システム工学 (量子制御)

研究キーワード 【 表示 / 非表示

  • 量子制御

  • 量子情報

 

著書 【 表示 / 非表示

  • Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control

    H. I. Nurdin and N. Yamamoto, Springer, 2017年05月

  • 複素関数論の基礎

    山本 直樹, 裳華房, 2015年11月

論文 【 表示 / 非表示

  • Natural quantum reservoir computing for temporal information processing

    Suzuki Y., Gao Q., Pradel K.C., Yasuoka K., Yamamoto N.

    Scientific Reports (Scientific Reports)  12 ( 1 )  2022年12月

     概要を見る

    Reservoir computing is a temporal information processing system that exploits artificial or physical dissipative dynamics to learn a dynamical system and generate the target time-series. This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits. The performance of this natural quantum reservoir is demonstrated in a benchmark time-series regression problem and a practical problem classifying different objects based on temporal sensor data. In both cases the proposed reservoir computer shows a higher performance than a linear regression or classification model. The results indicate that a noisy quantum device potentially functions as a reservoir computer, and notably, the quantum noise, which is undesirable in the conventional quantum computation, can be used as a rich computation resource.

  • Speed limits for two-qubit gates with weakly anharmonic qubits

    Ashhab S., Yoshihara F., Fuse T., Yamamoto N., Lupascu A., Semba K.

    Physical Review A (Physical Review A)  105 ( 4 )  2022年04月

    ISSN  24699926

     概要を見る

    We consider the implementation of two-qubit gates when the physical systems used to realize the qubits possess additional quantum states in the accessible energy range. We use optimal control theory to determine the maximum achievable gate speed for two-qubit gates in the qubit subspace of the many-level Hilbert space, and we analyze the effect of the additional quantum states on the gate speed. We identify two competing mechanisms. On one hand, higher energy levels are generally more strongly coupled to each other. Under suitable conditions, this stronger coupling can be utilized to make two-qubit gates significantly faster than the reference value based on simple qubits. On the other hand, a weak anharmonicity constrains the speed at which the system can be adequately controlled: according to the intuitive picture, faster operations require stronger control fields, which are more likely to excite higher levels in a weakly anharmonic system, which in turn leads to faster decoherence and uncontrolled leakage outside the qubit space. To account for this constraint, we modify the pulse optimization algorithm to avoid pulses that lead to appreciable population of the higher levels. In this case, we find that the presence of the higher levels can lead to a significant reduction in the maximum achievable gate speed. We also compare the optimal-control gate speeds with those obtained using the cross-resonance or selective-darkening gate protocol. We find that this protocol, with some parameter optimization, can be used to achieve a relatively fast implementation of the controlled-NOT gate. These results can help the search for optimized gate implementations in realistic quantum computing architectures, such as those based on superconducting circuits. They also provide guidelines for desirable conditions on anharmonicity that would allow optimal utilization of the higher levels to achieve fast quantum gates.

  • Grover search revisited: Application to image pattern matching

    Tezuka H., Nakaji K., Satoh T., Yamamoto N.

    Physical Review A (Physical Review A)  105 ( 3 )  2022年03月

    ISSN  24699926

     概要を見る

    The landmark Grover algorithm for amplitude amplification serves as an essential subroutine in various types of quantum algorithms, with guaranteed quantum speedup in query complexity. However, there has been no proposal to realize the original motivating application of the algorithm, i.e., the database search or more broadly the pattern matching in a practical setting, mainly due to the technical difficulty in efficiently implementing the data loading and amplitude amplification processes. In this paper, we propose a quantum algorithm that approximately executes the entire Grover database search or pattern matching algorithm. The key idea is to use the recently proposed approximate amplitude encoding method on a shallow quantum circuit, together with the easily implementable inversion-test operation for realizing the projected quantum state having similarity to the query data, followed by the amplitude amplification operation that is independent to the target data index. We provide a thorough demonstration of the algorithm in the problem of image pattern matching.

  • Noisy quantum amplitude estimation without noise estimation

    Tanaka T., Uno S., Onodera T., Yamamoto N., Suzuki Y.

    Physical Review A (Physical Review A)  105 ( 1 )  2022年01月

    ISSN  24699926

     概要を見る

    Many quantum algorithms contain an important subroutine - the quantum amplitude estimation. As the name implies, this is essentially the parameter estimation problem and thus can be handled via the established statistical estimation theory. However, this problem has an intrinsic difficulty that the system, i.e., the real quantum computing device, inevitably introduces unknown noise; the probability distribution model then has to incorporate many nuisance noise parameters, resulting that the construction of an optimal estimator becomes inefficient and difficult. For this problem we apply the theory of nuisance parameters (more specifically, the parameter orthogonalization method) to precisely compute the maximum likelihood estimator for only the target amplitude parameter by removing the other nuisance noise parameters. That is, we can estimate the amplitude parameter without estimating the noise parameters. We validate the parameter orthogonalization method in a numerical simulation and study the performance of the estimator in the experiment using a real superconducting quantum device.

  • Quantum semi-supervised generative adversarial network for enhanced data classification

    Nakaji K., Yamamoto N.

    Scientific Reports (Scientific Reports)  11 ( 1 )  2021年12月

     概要を見る

    In this paper, we propose the quantum semi-supervised generative adversarial network (qSGAN). The system is composed of a quantum generator and a classical discriminator/classifier (D/C). The goal is to train both the generator and the D/C, so that the latter may get a high classification accuracy for a given dataset. Hence the qSGAN needs neither any data loading nor to generate a pure quantum state, implying that qSGAN is much easier to implement than many existing quantum algorithms. Also the generator can serve as a stronger adversary than a classical one thanks to its rich expressibility, and it is expected to be robust against noise. These advantages are demonstrated in a numerical simulation.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

全件表示 >>

総説・解説等 【 表示 / 非表示

  • 連続時間カルマンフィルタと量子状態推定

    山本 直樹

    計測自動制御学会誌 56 ( 9 ) 662 - 667 2017年09月

    記事・総説・解説・論説等(学術雑誌)

  • 量子フィードバック制御のための推定論とその応用

    山本 直樹

    京都大学数理解析研究所講究録 1834 ( 5 ) 96 - 108 2013年05月

    記事・総説・解説・論説等(大学・研究所紀要), 単著

  • 量子フィードバック制御の数理

    山本 直樹

    数理科学 585   21 - 27 2012年03月

    記事・総説・解説・論説等(商業誌、新聞、ウェブメディア), 単著

  • 量子力学と確率システム理論

    山本 直樹

    計測と制御 50 ( 11 ) 993-999 2011年11月

    記事・総説・解説・論説等(学術雑誌), 単著

  • 確率微分方程式の基礎

    山本 直樹

    計測と制御 50 ( 11 ) 937-943 2011年11月

    記事・総説・解説・論説等(学術雑誌), 単著

全件表示 >>

研究発表 【 表示 / 非表示

  • Quantum op-amp and functionalities

    N. Yamamoto

    APS March Meeting (Los Angeles, California, USA) , 

    2018年03月

    口頭発表(一般), APS

  • 散逸下における量子状態制御の限界

    小林幸一、山本直樹

    第37回量子情報技術研究会, 

    2017年11月

    口頭発表(一般)

  • 多段量子フィードバック増幅器の感度解析

    横寺裕、山本直樹

    第36回量子情報技術研究会, 

    2017年05月

    ポスター発表

  • 散逸下における量子状態制御の限界

    小林幸一、山本直樹

    第35回量子情報技術シンポジウム, 

    2016年11月

    ポスター発表

  • LQG制御による量子スクイズド状態の角度揺らぎ抑制

    黒柳亮介、山本直樹

    第35回量子情報技術シンポジウム (高エネルギー加速器研究機構) , 

    2016年11月

    ポスター発表

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 量子ソフトウェア

    2018年10月
    -
    継続中

    科学技術振興機構, 光・量子飛躍フラッグシッププログラム(Q-LEAP), 山本直樹, 補助金,  研究代表者

  • フィードバック増幅による量子機能創出

    2016年10月
    -
    2020年03月

    科学技術振興機構, 戦略的創造研究推進事業さきがけプログラム, 山本直樹, 補助金,  研究代表者

  • システム制御理論に基づく量子状態変換法の設計理論

    2015年04月
    -
    2018年03月

    日本学術振興会, 科学研究費補助金(文部科学省・日本学術振興会), 山本直樹, 補助金,  研究代表者

  • デコヒーレンスフリー量子情報処理のためのシステム制御理論

    2012年04月
    -
    2015年03月

    日本学術振興会, 科学研究費補助金(文部科学省・日本学術振興会), 山本直樹, 補助金,  研究代表者

  • 線形量子ネットワークのフィードバック制御理論

    2009年04月
    -
    2012年03月

    日本学術振興会, 科学研究費補助金(文部科学省・日本学術振興会), 山本直樹, 補助金,  研究代表者

全件表示 >>

受賞 【 表示 / 非表示

  • Outstanding Reviewer Award

    2018年02月, IOP

  • エレクトロニクスソサイエティ活動功労表彰

    2018年02月, 電子情報通信学会

 

担当授業科目 【 表示 / 非表示

  • 量子コンピューティング

    2022年度

  • プレゼンテーション技法

    2022年度

  • 物理情報数学A

    2022年度

  • 基礎理工学課題研究

    2022年度

  • 基礎理工学特別研究第2

    2022年度

全件表示 >>

担当経験のある授業科目 【 表示 / 非表示

  • 応用確率論

    慶應義塾

    2014年04月
    -
    2015年03月

    秋学期, 講義, 専任, 1時間

    確率・確率過程論

  • 物理情報数学A

    慶應義塾

    2014年04月
    -
    2015年03月

    春学期, 講義, 兼担, 1時間

    複素関数論

 

委員歴 【 表示 / 非表示

  • 2013年04月
    -
    継続中

    量子情報技術時限付専門委員, 電子情報通信学会エレクトロニクスソサエティ

     特記事項を見る

    2015年 4月 ~ 2017年3月 の2年間、幹事