池原 雅章 (イケハラ マサアキ)

Ikehara, Masaaki

写真a

所属(所属キャンパス)

理工学部 電気情報工学科 (矢上)

職名

教授

HP

外部リンク

経歴 【 表示 / 非表示

  • 1989年04月
    -
    1992年03月

    長崎大学工学部 ,専任講師

  • 1992年04月
    -
    1996年03月

    慶應義塾大学理工学部電気工学科 ,専任講師

  • 1996年04月
    -
    1998年03月

    慶應義塾大学理工学部電子工学科兼電気工学科 ,専任講師

  • 1998年04月
    -
    継続中

    慶應義塾大学理工学部 ,助教授

学歴 【 表示 / 非表示

  • 1984年03月

    慶應義塾大学, 工学部, 電気工学科

    大学, 卒業

  • 1986年03月

    慶應義塾大学, 理工学研究科, 電気工学専攻

    大学院, 修了, 修士

  • 1989年03月

    慶應義塾大学, 理工学研究科, 電気工学専攻

    大学院, 修了, 博士

学位 【 表示 / 非表示

  • 工学 , 慶應義塾大学, 1989年03月

 

研究分野 【 表示 / 非表示

  • ものづくり技術(機械・電気電子・化学工学) / 通信工学 (ディジタル信号処理)

 

著書 【 表示 / 非表示

  • MATLABマルティメディア信号処理(下)

    池原 雅章、島村徹也、真田幸俊, 培風館, 2005年

  • 培風館

    池原 雅章、島村徹也, 2004年01月

  • 培風館

    池原 雅章、真田幸俊, 2002年02月

  • 科学技術出版

    池原 雅章, 2001年09月

  • 培風館

    高橋、池原, 培風館, 1999年07月

全件表示 >>

論文 【 表示 / 非表示

  • Efficient and Effective Blind JPEG Image Improvement With Sequential Feature Processing

    Ezumi S., Ikehara M.

    IEEE Access 12   151975 - 151986 2024年10月

    研究論文(学術雑誌), 査読有り

     概要を見る

    Image compression technologies such as JPEG enable efficient use of digital images. However, these technologies also degrade the quality of the image, resulting in a poor visual appearance and reduced usability. One way to solve the quality problem and achieve high efficiency in using high-quality JPEG images is to use quality improvement technologies based on artifact removal. In recent years, various methods using machine-learning-optimized neural networks have been devised to achieve high performance whereas maintaining versatility for JPEG images with various qualities. On the other hand, methods that achieve high-quality images need enormous computing costs, which is a barrier to easy use, especially when using images with large size. Given this situation, this paper proposes a method that achieves higher performance with smaller computational resources while maintaining the image quality in broader situations. The proposed method consists of a Quality Estimation Part (QE Part) that estimates the quality of the input image and Image Processing Parts (IP Parts) that process the image based on the estimated quality representation. Sequential processing is carried out by connecting multiple IP Parts in a cascade, which enables efficient and effective processing of different features. Each IP Part consists of multiple Processing Blocks, which enable effective quality improvement while maintaining efficiency. These measures enable the proposed method to achieve state-of-the-art quantitative results and better qualitative results that outperform conventional methods for images with various qualities. The code and the pre-trained models are released at https://github.com/ezumi-keio/Sequential_Processing-main.

  • Edge-Guided Low-Light Image Enhancement Based on GAN with Effective Modules

    Matsui T., Ikehara M.

    European Signal Processing Conference    456 - 460 2024年09月

    研究論文(国際会議プロシーディングス), 査読有り,  ISSN  22195491

     概要を見る

    Under low-light conditions, the images taken may not be satisfactorily bright and may degrade in appearance. Low-light image enhancement (LLIE) is a process that converts such dim images into images taken under normal lighting conditions. The primary objectives of LLIE are to diminish noise and artifacts, maintain the integrity of edges and textures, and restore the image’s natural brightness and colors. Deep learning-based methods have shown remarkable success in this field recently but are hindered by their lengthy processing times due to intricate network architectures. To address the balance between performance and processing speed, we introduce a streamlined network equipped with efficient modules. Our approach incorporates a GAN (Generative Adversarial Network) framework enhanced with preprocessing for edge and texture extraction. We also integrate Channel Attention for color and illumination correction, Res FFT-ReLU for noise reduction, and Pixel Shuffler for high-frequency detail preservation. Our experiments show that our method surpasses traditional LLIE techniques in both quality and processing speed.

  • MSARNet: Efficient JPEG Artifact Removal Using Multi-Stage Style Network

    Ezumi S., Ikehara M.

    Digest of Technical Papers - IEEE International Conference on Consumer Electronics 2024年01月

    研究論文(国際会議プロシーディングス), 査読有り,  ISSN  0747668X

     概要を見る

    With the rapid development of photography and information processing technologies, we use more and more digital images in our daily lives. JPEG is one of the most widely used digital image formats because of its high efficiency and widespread support. JPEG Artifact Removal is a task that removes artifacts in JPEG images, such as noise and color distortion in JPEG images. Existing methods for JPEG Artifact Removal require high computational costs, which means stricter performance requirements or longer processing time. We propose a novel method for JPEG Artifact Removal named Multi-Stage style Artifacts Removal Net (MSARNet), which meets high performance, high versatility, and low computational cost. MSARNet adopts multi-stage processing, and images are processed in processing stages step by step. This process enables our proposed method to deal with different types of images effectively and efficiently. Additionally, MSARNet estimates the quality value of the input image, which contributes to effective feature processing. Experimental results show that our proposed method handles various artifacts well and outperforms existing methods in artifact removal tasks with lower computational costs.

  • Multiple Adverse Weather Removal Using Masked-Based Pre-Training and Dual-Pooling Adaptive Convolution

    Yamashita S., Ikehara M.

    IEEE Access 12   58057 - 58066 2024年

    研究論文(学術雑誌)

     概要を見る

    Removing artifacts caused by multiple adverse weather, including rain, fog, and snow, is crucial for image processing in outdoor environments. Conventional high-performing methods face challenges, such as requiring pre-specification of weather types and slow processing times. In this study, we propose a novel convolutional neural network-based hierarchical encoder-decoder model that addresses these issues effectively. Our model utilizes knowledge of feature representations obtained from masked-based pre-training on a large-scale dataset. To remove diverse degradations efficiently, we employ a proposed dual-pooling adaptive convolution, which improves representational capability of weight generating network by using average pooling, max pooling, and filter-wise global response normalization. Experiments conducted on both synthetic and real image datasets show that our model achieves promising results. The performance on real images is also improved by a novel learning strategy, in which a model trained on the synthetic image dataset is fine-tuned to the real image dataset. The proposed method is notably cost-effective in terms of computational complexity and inference speed. Moreover, ablation studies show the effectiveness of various components in our method.

  • Faster Training of Large Kernel Convolutions on Smaller Spatial Scales

    Fukuzaki S., Ikehara M.

    IEEE Access 12   161312 - 161328 2024年

    研究論文(学術雑誌)

     概要を見る

    Computational requirements for training state-of-the-art neural network models are increasing on vision tasks because high computational factors have become known to be effective in improving quality. While research in the image-processing field requires a lot of trials, this trend makes proving hypotheses difficult for researchers in computationally restricted environments. Neural convolution with a wide receptive field is one of the high-computational factors with quality improvement. This study aims to accelerate the training of the large kernel convolutions by resizing both training images and convolution filters to a smaller scale. Applying this strategy requires careful training designs to replace conventional training on the target scale, and we propose four techniques to improve the quality of the trained models. In our experiment, we apply our proposals to train an image classifier model modified from RepLKNet-31B on the image classification task of the CIFAR-10, CIFAR-100, and STL-10 datasets. Our proposed framework trains almost the same models 4.62-4.91 times faster than the standard training on the target spatial scale, keeping its accuracy, and provides 2.61-2.79 times further training acceleration and stability in accuracy compared to Progressive Learning. In addition to the training acceleration, our framework can simultaneously train models for multiple scales without any scale-specific tuning, which provides scalable usage considering the computational costs.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

研究発表 【 表示 / 非表示

  • Image Rrestoration based on Weighted Average of Multiple Blurred and Noisy Images

    池原 雅章

    2018 International Workshop on Advanced Image Technology (IWAIT 2018), 

    2018年01月

    口頭発表(一般)

  • Noise Removal based on Surface Approximation of Color Line

    池原 雅章

    2018 International Workshop on Advanced Image Technology (IWAIT 2018), 

    2018年01月

    口頭発表(一般)

  • Random-valued Impulse Noise Removal Using Non-local Search for Similar Structures and Sparse Representation

    池原 雅章

    2018 International Workshop on Advanced Image Technology (IWAIT 2018), 

    2018年01月

    口頭発表(一般)

  • Joint Bilateral based Image Denoising using Multi-sized 2D Hard Threshold

    Yamaguchi Takuro and IKEHARA MASAAKI

    Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 2017 (Kuala Lumpur) , 

    2017年12月

    口頭発表(一般)

  • Color Image Coding based on Linear Combination of Adaptive Colorspaces

    池原 雅章

    42nd IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP 2017), 

    2017年03月

    口頭発表(一般)

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 信号処理技術を用いた非局所的深層学習による画像の劣化除去

    2023年04月
    -
    2026年03月

    池原 雅章, 基盤研究(C), 補助金,  研究代表者

  • 信号処理と深層学習の融合による高速高精細画像復元に関する研究

    2020年04月
    -
    2023年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 池原 雅章, 基盤研究(C), 補助金,  研究代表者

  • 位相情報を用いた物体認識のための高精度位置・姿勢推定に関する研究

    2017年04月
    -
    2020年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 池原 雅章, 基盤研究(C), 補助金,  研究代表者

受賞 【 表示 / 非表示

  • フェロー

    2015年09月, 電子情報通信学会

    受賞区分: その他

  • Senior Member

    2001年06月, IEEE

    受賞区分: 国内外の国際的学術賞

 

担当授業科目 【 表示 / 非表示

  • シグナルプロセッシング

    2024年度

  • 電気情報工学セミナーⅡ

    2024年度

  • 電気情報工学輪講

    2024年度

  • メディア信号処理

    2024年度

  • 自然科学実験

    2024年度

全件表示 >>

 

社会活動 【 表示 / 非表示

  • IEEE Transaction on Signal Processing

    2001年03月
    -
    継続中

所属学協会 【 表示 / 非表示

  • 電子情報通信学会信号処理研究専門委員会, 

    2010年04月
    -
    2011年03月
  • 電子情報通信学会信号処理研究専門委員会, 

    2008年04月
    -
    2010年03月
  • IEEE, 

    2001年06月
    -
    継続中
  • 電子情報通信学会 多次元信号処理特集号, 

    1999年09月
    -
    継続中
  • 電子情報通信学会 信号処理特集号, 

    1999年09月
    -
    継続中

全件表示 >>

委員歴 【 表示 / 非表示

  • 2010年04月
    -
    2011年03月

    委員長, 電子情報通信学会信号処理研究専門委員会

  • 2008年04月
    -
    2010年03月

    副委員長, 電子情報通信学会信号処理研究専門委員会

  • 2001年06月
    -
    継続中

    Senior Member, IEEE

  • 2001年03月
    -
    継続中

    Associate Editor, IEEE Transaction on Signal Processing

  • 1999年09月
    -
    継続中

    編集委員, 電子情報通信学会 多次元信号処理特集号

全件表示 >>