Yan, Jiwang

写真a

Affiliation

Faculty of Science and Technology, Department of Mechanical Engineering (Yagami)

Position

Professor

Related Websites

External Links

Profile Summary 【 Display / hide

  • To create new products with high added value, we are conducting R&D on high-accuracy, high-efficiency, resource-saving manufacturing technologies through micro/nanometer-scale material removal, deformation, and property control. Our recent research focuses on ultra-precision mechanical fabrication, micro-nano forming/imprinting, micro electrical machining, laser machining, laser recovery, and laser Raman spectroscopy.

Career 【 Display / hide

  • 2000.04
    -
    2001.09

    Research Associate, Tohoku University, Graduate School of Engineering

  • 2001.10
    -
    2005.03

    Associate Professor, Kitami Institute of Technology

  • 2005.04
    -
    2007.03

    Associate Professor, Tohoku University, Graduate School of Engineering

  • 2007.04
    -
    2012.03

    Associate Professor, Tohoku University, Graduate School of Engineering

  • 2008.02
    -
    2008.04

    Sydney University, Japan-Australia Exchange Researcher

display all >>

Academic Background 【 Display / hide

  • 1991.07

    Jilin University, Faculty of Engineering, Department of Mechanical Engineering

    University, Graduated

  • 1994.03

    Jilin University, Graduate School, Division of Engineering, Department of Mechanical Engineering

    Graduate School, Completed, Master's course

  • 1996.01

    Tsinghua University, Graduate School, Division of Engineering, Department of Precision Instruments and Mechanology

    Graduate School, Withdrawal before completion, Doctoral course

  • 2000.03

    Tohoku University, Graduate School, Division of Engineering, Department of Mechatronics and Precision Engineering

    Graduate School, Completed, Doctoral course

Academic Degrees 【 Display / hide

  • Ph.D., Tohoku University, Coursework, 2000.03

 

Research Areas 【 Display / hide

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Manufacturing and production engineering (Precision Engineering/Mechanical manufacturing)

  • Nanotechnology/Materials / Material processing and microstructure control (Material Processing/Treatment)

  • Nanotechnology/Materials / Nano/micro-systems (Micro/Nanodevice)

  • Nanotechnology/Materials / Composite materials and interfaces (Applied Physical Properties/Crystal Engineering)

Research Keywords 【 Display / hide

  • Ultraprecision machining

  • Micro/nano manufacturing

  • Laser processing

  • Electrical discharge machining

  • Nanomechanics

 

Books 【 Display / hide

  • Advanced Ceramic Coatings: Fundamentals, Manufacturing, and Classification, R. K. Gupta, A. Motallebzadeh, S. Kakooei, T. A. Nguyen, A. Behera (eds.)

    P. J. Liew, J. Yan, C. Y. Yap, Elsevier B. V., 2023.06

    Scope: Chapter 19: Electrical discharge coating with quarry dust powder suspension,  Contact page: 433-460

  • Electrical discharge coating with quarry dust powder suspension

    Liew P.J., Yan J., Yap C.Y., Advanced Ceramic Coatings: Fundamentals, Manufacturing, and Classification, 2023.01

     View Summary

    In this chapter, firstly, a comprehensive review of electrical discharge coating (EDC) was made to identify a new research area, then the EDC technique with quarry dust powder suspension on tungsten carbide cobalt was introduced. The effects of quarry dust suspension on the coated surface characteristics and tribological properties were investigated. By using EDC with quarry dust suspension, a layer of coating consisting of hard carbides (SiC, Mg2C3, Fe2C, and CaC2) and oxide phases (SiO2, Al2O3, Fe2O3, CaO, CoO, and ZnO) due to material migration was confirmed, and the coating layer thickness was greatly influenced by quarry dust concentration. Under coating conditions of 5 A of peak current (I p ) and 300 μs of pulse on time (T on ), the Vickers microhardness increased by 28%, while the surface roughness, coefficient of friction, and wear scar depth of the coating layer decreased by 29%, 61%, and 63%, respectively, when compared with the original substrate.

  • Multidisciplinary Science in Micro/Nanoscale Manufacturing

    J. Yan (Guest editor), Elsevier B.V., 2020.12

    Scope: International Journal of Machine Tools and Manufacture, Volume 159 (Special Issue)

  • Micro and Nanoscale Laser Processing of Hard Brittle Materials

    J. Yan and N. Takayama, Elsevier B.V., 2019.11,  Page: 242

    Scope: 1-242

  • Recent Developments of Silicon Anodes for Lithium Ion Batteries

    J. Yan, CMC Publishing CO., LTD. , 2019.11,  Page: 251

    Scope: Chapter 3: Micro Pillar Generation by Laser Irradiation on Waste Silicon Powder and Its Electrode Characteristics, 20-33

display all >>

Papers 【 Display / hide

  • Formation of Laser-Induced Periodic Surface Structures on Reaction-Bonded Silicon Carbide by Femtosecond Pulsed Laser Irradiation

    Meshram T., Yan J.

    Nanomanufacturing and Metrology (Nanomanufacturing and Metrology)  6 ( 1 )  2023.12

    ISSN  2520811X

     View Summary

    Reaction-bonded silicon carbide (RB-SiC) is an excellent engineering material with high hardness, stiffness, and resistance to chemical wear. However, its widespread use is hindered due to the properties mentioned above, making it difficult to machine functional surface structures through mechanical and chemical methods. This study investigated the fundamental characteristics of laser-induced periodic surface structures (LIPSSs) on RB-SiC via femtosecond pulsed laser irradiation at a wavelength of 1028 nm. Low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL) formed on the surface along directions perpendicular to the laser polarization. SiC grains surrounded by a large amount of Si show a reduced threshold for LIPSS formation. By varying laser fluence and scanning speed, HSFL–LSFL hybrid structures were generated on the SiC grains. Transmission electron microscopy observations and Raman spectroscopy were carried out to understand the formation mechanism of the hybrid LIPSS. A possible mechanism based on the generation of multiple surface electromagnetic waves due to the nonlinear response of SiC was proposed to explain the hybrid structure formation. Furthermore, the direction of laser scanning with respect to laser polarization affects the uniformity of the generated LIPSS.

  • Multilayer Graphene-Coated Silicon Carbide Nanowire Formation Under Defocused Laser Irradiation

    Minami K., Kobinata K., Yan J.

    Nanomanufacturing and Metrology (Nanomanufacturing and Metrology)  6 ( 1 )  2023.12

    ISSN  2520811X

     View Summary

    Graphene-coated silicon carbide (SiC@C) core–shell nanostructures have attracted attention in the fields of energy storage and nanoelectronics. In this study, multilayer graphene-coated silicon carbide (SiC) nanowires were obtained through the laser irradiation of a mixture target of graphite powder and silicon (Si) grinding sludge discharged from Si wafer manufacturing. Laser irradiation was performed using an ytterbium (Yb) fiber pulsed laser with a pulse width of 10 ms and a wavelength of 1070 nm with various defocus distances. The effect of laser defocusing on the morphology of the generated nanostructures was investigated. Results showed that nanowires were produced under the defocused conditions, and nanoparticles were observed at the on-focus position. The products obtained under all defocused conditions showed a core–shell structure, and the SiC nanowires were covered by graphene layers. The aspect ratio of the nanowires increased with the defocus distance. Observation of the laser-induced plume using a high-speed camera showed that when the laser was defocused, the plume propagation speed slowed down, and the shape of the plume changed to a swirling vortex. The nanowire formation was closely related to the propagation speed and shape variation of the plume. This successful production of SiC@C core–shell nanowires from Si waste opens up the possibility of the sustainable development of new materials for energy storage and nanoelectronics.

  • Tool wear and surface integrity in liquid nitrogen clean cutting of cobalt-based superalloy GH605 with AlTiN coated tools

    Li X., Zheng G., Yan J., Cheng X., Li Y., Cui E.

    Wear (Wear)  530-531 2023.10

    ISSN  00431648

     View Summary

    The tool wear is severe and the machined surface quality is low in dry cutting of cobalt-based superalloy. The traditional coolant is harmful to the environment and not in line with sustainable development. The liquid nitrogen (LN2) clean cutting of cobalt-based superalloy GH605 using AlTiN coated tools is proposed in this work. The tool wear mechanism and the machined surface integrity are investigated. The results show that, with the decrease of LN2 injection temperature, the sharp wear stage of the tool can be delayed. The injection temperature directly affects the tool life. Compared with dry cutting, the tool life is increased by 42.5% at LN2 injection of −190 °C. Under the lower liquid nitrogen condition, the coating peeling is reduced on the rake face. The decrease of LN2 injection temperature can effectively reduce the damaged area of the flank face and inhibit the oxidation wear. The injection temperature between −30 °C and −150 °C can significantly reduce the surface roughness. The minimum surface roughness value at the injection temperature of −90 °C is 0.486 μm, which is 39.4% lower than that at dry cutting condition. When the LN2 injection temperature is below −90 °C, the thickness of the white layer is less than half of that in dry cutting condition. The hardness of the machined surface is enhanced and the residual stress is reduced at injection temperature below −150 °C. This work demonstrates the possibility of improving the machinability of cobalt-based superalloy by optimizing the LN2 injection temperature.

  • Nanosecond laser coloration of Ti-based metallic glass under various laser parameters and irradiation atmospheres

    Zhang H., Wang C., Huang H., Zhang L., Yan J.

    Journal of Non-Crystalline Solids (Journal of Non-Crystalline Solids)  618 2023.10

    ISSN  00223093

     View Summary

    Laser coloration is an emerging technique for surface functionalization of metallic glasses (MGs). Understanding the influence of laser parameters on surface color of MGs will accelerate their commercialization. Herein, surface coloration was conducted on a Ti-based MG, and the hue–saturation–intensity (HSI) color space was employed to evaluate color variation. Various colors were achieved by varying the average power and scanning speed in an ambient atmosphere. The results indicated that the overlap rate and number of repetitive scans had a negligible effect on the color and significantly changed the microscopic morphology. The irradiated surfaces were yellowish and colorless in nitrogen and argon atmospheres. Furthermore, the effect of morphology on the surface color and the mechanism of surface coloration were examined. This study demonstrates that nanosecond laser irradiation is an effective method for achieving surface coloration of MGs, which is expected to enrich the surface functionality of MG products.

  • Achieving superhydrophobicity of the FeCoCrMnNi surface via synergistic laser texturing and low temperature annealing

    Wang C., Huang H., Cui M., Zhang Z., Zhang L., Yan J.

    Journal of Laser Applications (Journal of Laser Applications)  35 ( 3 )  2023.08

    ISSN  1042346X

     View Summary

    Superhydrophobic surfaces are highly desirable due to their remarkable water-repellent behavior. Laser texturing with subsequent low surface energy modification is a versatile strategy for creating such surfaces. In this study, via synergistic laser texturing and low temperature annealing, superhydrophobicity was first attempted to be achieved on the FeCoCrMnNi surface. By optimizing the laser parameters, the arrays with large depth-to-width ratios were constructed. Subsequently, by annealing at a low temperature, the transition process from superhydrophilicity to superhydrophobicity was successfully achieved on the FeCoCrMnNi surface. The effects of the hatching interval on the wettability were investigated, and the mechanism of wettability transition for FeCoCrMnNi was discussed. According to the experimental results and analysis, the textured surfaces exhibited excellent superhydrophobicity at different hatching intervals and a maximum contact angle of 165° was obtained. Furthermore, the created superhydrophobic surfaces possessed good liquid capture and self-cleaning capabilities and enabled magnification for optical imaging. The wettability transition after low temperature annealing was attributed to the absorption of airborne organic compounds. This study provides an efficient, clean, and versatile strategy to achieve superhydrophobicity of the FeCoCrMnNi surface by laser processing.

display all >>

Reviews, Commentaries, etc. 【 Display / hide

  • Laser polishing technologies for additive-manufactured metal products

    J. Yan

    Journal of the Japan Society for Abrasive Technology 67 ( 8 ) 440 - 443 2023.08

    Article, review, commentary, editorial, etc. (scientific journal), Single Work, Lead author

  • Ultraprecision ductile mode machining of hard brittle materials

    J. Yan

    Journal of the Japan Society of Mechanical Engineers 125 ( 1247 ) 11 - 14 2022.10

    Article, review, commentary, editorial, etc. (scientific journal), Single Work, Lead author, Corresponding author

  • Ultrasonic vibration-assisted grinding of carbon-based difficult-to-cut materials

    J. Yan

    Journal of the Japan Society for Precision Engineering 88 ( 7 ) 541 - 545 2022.07

    Article, review, commentary, editorial, etc. (scientific journal), Single Work, Lead author, Corresponding author

  • Electrochemical Machining on an EDM Machine for Fine Finishing of Micro Grooves

    J. Yan

    Die and Mould Technology 37 ( 4 ) 14 - 17 2022.04

    Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media), Joint Work, Lead author, Corresponding author

  • EDM/Grinding Hybrid Machining of Single-crystal SiC using Poly-crystal Diamond Tools

    J. Yan

    Journal of the Japan Society for Abrasive Technology 65 ( 12 ) 650 - 653 2021.12

    Article, review, commentary, editorial, etc. (scientific journal), Single Work

display all >>

Presentations 【 Display / hide

  • Laser-induced periodic surface structures generation on single-crystal 4H-SiC by femtosecond pulsed infrared laser irradiation

    T. Meshram, J. Yan

    The 19th International Conference on Precision Engineering (ICPE2022) (Singapore) , 

    2022.11
    -
    2022.12

    Oral presentation (general)

  • Cutting of Microgrooves on Ferrous Metal by Using Laser-Processed cBN Tools

    D. Kitagawa, T. Meshram, J. Yan

    The 19th International Conference on Precision Engineering (ICPE2022) (Singapore) , 

    2022.11
    -
    2022.12

    Oral presentation (general)

  • Effect of dopant concentration on femtosecond pulsed laser processing characteristics of yttria-stabilized zirconia

    Y. Yamamuro, T. Shimoyama, J. Yan

    The 19th International Conference on Precision Engineering (ICPE2022) (Singapore) , 

    2022.11
    -
    2022.12

    Oral presentation (general)

  • A Novel Calibration Method of Machining Misalignment in FTS-Based Diamond Turning

    S. Tanikawa, J. Yan

    The 9th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2022) (Singapore) , 

    2022.11

    Oral presentation (general)

  • Fabrication of optical surfaces on polymethyl methacrylate by ultra-precision diamond turning

    M. Shimizu, J. Yan

    The 9th International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN 2022) (Singapore) , 

    2022.11

    Oral presentation (general)

display all >>

Awards 【 Display / hide

  • JSPE Best Paper Award

    Lin Zhang, Allen Yi, J. Yan, 2023.03, The Japan Society for Precision Engineering, Flexible fabrication of Fresnel micro-lens array by off-spindle-axis diamond turning and precision glass molding

    Type of Award: Award from Japanese society, conference, symposium, etc.

  • 2022 IJEM Best Paper Award

    Y. Sato, J. Yan, 2023.03, International Journal of Extreme Manufacturing (IJEM), IoP publishing, Tool path generation and optimization for freeform surface diamond turning based on an independently controlled fast tool servo

    Type of Award: Honored in official journal of a scientific society, scientific journal

  • Machine Tool Technology Promotion Award

    S. Kasai, T. Sodetai, J. Yan, 2021.06, 工作機械技術振興財団, 炭素拡散反応を用いた形彫り放電加工による多結晶ダイヤモンドの3次元形状創製

    Type of Award: Award from publisher, newspaper, foundation, etc.

  • Machine Tool Technology Promotion Award

    K. Nagayama, J. Yan, 2021.06, 工作機械技術振興財団, Measurement and Compensation of Tool Contour Error Using White Light Interferometry for Ultra-Precision Diamond Turning of Freeform Surfaces

    Type of Award: Award from publisher, newspaper, foundation, etc.

  • JSME Medal for Outstanding Paper

    T. Terabayashi, J. Yan, 2021.04, The Japan Society of Mechanical Engineers, Ultra-precision cutting of roll molds having two-directional wavy microstructures

    Type of Award: Award from Japanese society, conference, symposium, etc.

display all >>

 

Courses Taught 【 Display / hide

  • ULTRAPRECISION MACHINING AND METROLOGY

    2023

  • SPECIAL LECTURE SERIES ON MULTIDISCIPLINARY AND DESIGN SCIENCE

    2023

  • PRECISION MACHINING

    2023

  • MID-TERM INTERNSHIP

    2023

  • LONG-TERM INTERNSHIP

    2023

display all >>

 

Memberships in Academic Societies 【 Display / hide

  • The Japan Society of Mechanical Engineers, 

    1997.04
    -
    Present
  • The Japan Society for Precision Engineering, 

    1997.04
    -
    Present
  • The Japan Society for Abrasive Technology, 

    2000.04
    -
    Present
  • Japan Society for Applied Physics (JSAP), 

    2004.04
    -
    Present
  • Japan Laser Processing Society (JLPS), 

    2009.01
    -
    Present

display all >>

Committee Experiences 【 Display / hide

  • 2022.05
    -
    Present

    Director, Japan Society of Laser Technology (JSLT)

  • 2022.03
    -
    Present

    Director, Executive Director, Chairman of Publication Sector, Chairman of Journal Review Board, Japan Society of Precision Engineering (JSPE)

  • 2019.04
    -
    2022.03

    Journal Editorial Commitee Member, 日本機械学会

  • 2019.01
    -
    Present

    Editorial Board Member, International Journal of Extreme Manufacturing

  • 2018.04
    -
    Present

    Editorial Board Member, Journal of Micromanufacturing

display all >>