Yan, Jiwang

写真a

Affiliation

Faculty of Science and Technology, Department of Mechanical Engineering (Yagami)

Position

Professor

Related Websites

External Links

Profile Summary 【 Display / hide

  • To create new products with high added value, we are conducting R&D on high-accuracy, high-efficiency, resource-saving manufacturing technologies through micro/nanometer-scale material removal, deformation, and property control. Our recent research focuses on ultra-precision mechanical fabrication, micro-nano forming/imprinting, micro electrical machining, laser machining, laser recovery, and laser Raman spectroscopy.

Career 【 Display / hide

  • 2000.04
    -
    2001.09

    Research Associate, Tohoku University, Graduate School of Engineering

  • 2001.10
    -
    2005.03

    Associate Professor, Kitami Institute of Technology

  • 2005.04
    -
    2007.03

    Associate Professor, Tohoku University, Graduate School of Engineering

  • 2007.04
    -
    2012.03

    Associate Professor, Tohoku University, Graduate School of Engineering

  • 2008.02
    -
    2008.04

    Sydney University, Japan-Australia Exchange Researcher

display all >>

Academic Background 【 Display / hide

  • 1991.07

    Jilin University, Faculty of Engineering, Department of Mechanical Engineering

    University, Graduated

  • 1994.03

    Jilin University, Graduate School, Division of Engineering, Department of Mechanical Engineering

    Graduate School, Completed, Master's course

  • 1996.01

    Tsinghua University, Graduate School, Division of Engineering, Department of Precision Instruments and Mechanology

    Graduate School, Withdrawal before completion, Doctoral course

  • 2000.03

    Tohoku University, Graduate School, Division of Engineering, Department of Mechatronics and Precision Engineering

    Graduate School, Completed, Doctoral course

Academic Degrees 【 Display / hide

  • Ph.D., Tohoku University, Coursework, 2000.03

 

Research Areas 【 Display / hide

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Manufacturing and production engineering (Precision Engineering/Mechanical manufacturing)

  • Nanotechnology/Materials / Material processing and microstructure control (Material Processing/Treatment)

  • Nanotechnology/Materials / Nano/micro-systems (Micro/Nanodevice)

  • Nanotechnology/Materials / Composite materials and interfaces (Applied Physical Properties/Crystal Engineering)

Research Keywords 【 Display / hide

  • Ultraprecision machining

  • Micro/nano manufacturing

  • Laser processing

  • Electrical discharge machining

  • Nanomechanics

 

Books 【 Display / hide

  • Ultra-precision grooving technologies

    Huang W., Yan J., Comprehensive Materials Processing: Volume 1-13, Second edition, 2024.01

     View Summary

    Fabricating microgrooves on part surfaces is a way to provide advanced functionality of the parts, which has recently increased in several fields, such as biotechnology, optics, and aerospace. Considerable progress has been achieved in groove-cutting technology with the equipment development, process optimization and mechanisms understanding. This chapter reviews the ultraprecision cutting technologies for manufacturing of microgrooves and microgroove-based microstructures on various materials. Major cutting methods and their principles/mechanisms for microgrooving have been introduced. The main challenges in the cutting of microgrooves on ductile materials and brittle materials, respectively, are pointed out. Some innovations in groove-cutting technology are also highlighted. Several aspects in demand for further research and development are provided.

  • Advanced Ceramic Coatings: Fundamentals, Manufacturing, and Classification, R. K. Gupta, A. Motallebzadeh, S. Kakooei, T. A. Nguyen, A. Behera (eds.)

    P. J. Liew, J. Yan, C. Y. Yap, Elsevier B. V., 2023.06

    Scope: Chapter 19: Electrical discharge coating with quarry dust powder suspension,  Contact page: 433-460

  • Multidisciplinary Science in Micro/Nanoscale Manufacturing

    J. Yan (Guest editor), Elsevier B.V., 2020.12

    Scope: International Journal of Machine Tools and Manufacture, Volume 159 (Special Issue)

  • Micro and Nanoscale Laser Processing of Hard Brittle Materials

    J. Yan and N. Takayama, Elsevier B.V., 2019.11,  Page: 242

    Scope: 1-242

  • Recent Developments of Silicon Anodes for Lithium Ion Batteries

    J. Yan, CMC Publishing CO., LTD. , 2019.11,  Page: 251

    Scope: Chapter 3: Micro Pillar Generation by Laser Irradiation on Waste Silicon Powder and Its Electrode Characteristics, 20-33

display all >>

Papers 【 Display / hide

  • Micro-amplitude vibration-assisted scratching: a new method for one step and controllable fabrication of the microscale V-groove and nanoscale ripples

    Wu H., Huang H., Zhang Z., Yan J.

    International Journal of Extreme Manufacturing 7 ( 3 )  2025.06

    ISSN  26318644

     View Summary

    Highlights A micro-amplitude vibration-assisted scratching method was proposed. One step and controllable fabrication of microscale V-groove and nanoscale ripples was achieved. The effects of processing parameters on the resultant structures were explored. Relationships between processing parameters and dimensions of the resultant structures were established. Complex patterns were fabricated on flat and curved surfaces, achieving various structural colors.

  • Time delay compensation in high-speed diamond turning of freeform surface using independent fast tool servo with a long stroke

    Hashimoto T., Yan J.

    Precision Engineering 93   515 - 527 2025.05

    ISSN  01416359

     View Summary

    The demand for wearable device applications has continuously grown in recent years, especially with the significant rise of augmented and virtual reality technologies. Freeform optics plays a crucial role in these devices by enhancing optical performance, shortening the light path, and reducing the weight, all while allowing for smaller, lighter systems with higher efficiency. The independent fast tool servo (FTS)-based diamond-turning method stands out as a highly effective technique for fabricating freeform shapes with high accuracy and productivity. However, microsecond-order time delays occur within the system, significantly impacting form accuracy as machining speeds increase. This study explores the sources of form errors in freeform surface fabrication associated with the FTS diamond-turning process, with particular attention to the effects of clocking angle errors caused by the time delay. These errors were found to greatly affect form accuracy, especially at higher machining speeds. The FTS position data were analyzed, and time delays under various operational conditions due to servo control were confirmed. To precisely identify the extent of the time delay, a cylindrical surface was machined under high-speed conditions, and the clocking angle error was measured using a non-contact chromatic probe. Results showed that time delays originating from the machine platform had a significant effect on form accuracy. By accurately identifying and compensating for these time delays, the clocking angle error was eliminated. To validate the effectiveness of the time-delay compensation strategy, a cylindrical freeform surface was machined after the compensation, and the clocking angle error was minimized down to 0.00014° evaluated by on-machine measurement. The form accuracy of the freeform machining result after compensation was achieved at 0.85 μm PV. This study establishes a methodology for identifying and compensating for time delays in an independent FTS system, contributing to improved form accuracy in freeform optics fabrication.

  • Fabrication of microcone arrays on Ti6Al4V by nanosecond laser nitriding

    Zhang H., Wang B., Yang Z., Zhang H., Zhang Z., Huang H., Yan J.

    International Journal of Mechanical Sciences 287 2025.02

    ISSN  00207403

     View Summary

    The application of titanium alloys still faces some challenges such as relatively low hardness and insufficient wear resistance. Nanosecond pulsed laser irradiation in a nitrogen atmosphere has proven to be effective for fabricating micro/nano structures on titanium alloys, enhancing surface hardness and wear resistance. However, micro/nano structures produced by line-by-line laser scanning often exhibit directional differences and surface defects such as re-deposited particles and pores. Herein, vertically crossed laser scanning in a nitrogen atmosphere was employed to address the directional difference, enabling the simultaneous fabrication of microcone arrays and nitriding layers on Ti6Al4V surface. To eliminate the surface defects on the microcone structure, laser surface finishing via defocused scanning was performed, followed by morphological analysis, bonding force evaluation, and tribological performance testing. The results showed that the area percentage of re-deposited particles on the laser-finished microcone array surface decreased from 24 % to 5 %. The bonding force of the nitriding layer was assessed using linear loading scratch tests, and the highest value of 69 N was obtained. To investigate the wear resistance of the laser-finished microcone array surface, friction and wear tests were performed. From 25 °C to 600 °C, nearly no wear grooves were observed on the tested surfaces, demonstrating excellent high-temperature wear resistance. The wear mechanism was mainly related to the cutting action of the microcone structures on the counterpart ball. This study advances the fabrication of micro/nano structures and simultaneous nitriding on titanium alloys, demonstrating the significant potential for practical applications as surface contact materials.

  • Nanoindentation behavior of the laser-repaired CoCrFeNiV high-entropy alloy

    Wang C., Huang W., Yi C., Jiang M., Huang H., Yan J.

    Intermetallics 177 2025.02

    ISSN  09669795

     View Summary

    High-entropy alloys (HEAs) are solid-solution alloys composed of multiple elements, exhibiting excellent mechanical properties. The unique plastic deformation mechanism induced by their specific solid solution structures has attracted considerable attention but remains incompletely understood, particularly at the micro-scale. In this study, the surface morphology, chemical composition, and microstructures of CoCrFeNiV HEA before and after laser remelting repair were investigated. Nanoindentation testing was employed to characterize the surface hardness and creep behavior of the repaired surface. The distribution of surface hardness before and after laser remelting, as well as the indentation creep behavior under different loads, were studied. The mechanism of indentation creep on the repaired surface was discussed and analyzed. The effect of microstructures of HEAs, including precipitated phases and sub-grain boundaries, on dislocation-dominated micro-scale plastic deformation was elucidated by the transmission electron microscope (TEM). This study contributes to an in-depth understanding of the creep behavior and micro-scale deformation mechanisms in HEAs.

  • Special Issue: The State-of-the-Art in Japanese Manufacturing Research

    Kakinuma, Y; Matsubara, A; Matsumura, T; Sugita, N; Suzuki, N; Takahashi, S; Yan, JW

    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME 147 ( 1 )  2025.01

    ISSN  1087-1357

display all >>

Papers, etc., Registered in KOARA 【 Display / hide

Reviews, Commentaries, etc. 【 Display / hide

  • Laser-based micro/nano machining technologies for high-value added manufacturing

    J. Yan

    Machines and Tools 14 ( 11 ) 8 - 15 2024.11

    Article, review, commentary, editorial, etc. (scientific journal), Single Work, Lead author

  • Creating functional surfaces by micro/nano scale laser machining

    J. Yan

    Laser (Journal of the Japan Society of Laser Technology) 49 ( 1 ) 20 - 25 2024.11

    Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media), Single Work

  • Laser polishing technologies for additive-manufactured metal products

    J. Yan

    Journal of the Japan Society for Abrasive Technology 67 ( 8 ) 440 - 443 2023.08

    Article, review, commentary, editorial, etc. (scientific journal), Single Work, Lead author

  • Ultraprecision ductile mode machining of hard brittle materials

    J. Yan

    Journal of the Japan Society of Mechanical Engineers 125 ( 1247 ) 11 - 14 2022.10

    Article, review, commentary, editorial, etc. (scientific journal), Single Work, Lead author, Corresponding author

  • Ultrasonic vibration-assisted grinding of carbon-based difficult-to-cut materials

    J. Yan

    Journal of the Japan Society for Precision Engineering 88 ( 7 ) 541 - 545 2022.07

    Article, review, commentary, editorial, etc. (scientific journal), Single Work, Lead author, Corresponding author

display all >>

Presentations 【 Display / hide

  • Scale-bridging surface structuring for functional performance improvement of components

    J. Yan

    7th CIRP CSI Conference on Surface Integrity 2024 (ブレーメン) , 

    2024.05

    Oral presentation (keynote)

  • Tool Dynamics-induced Surface Topography Error in Fast Tool Servo-Based Diamond Turning of Micro Dome Arrays

    T. Hashimoto, J. Yan

    7th CIRP CSI Conference on Surface Integrity 2024 (Bremen) , 

    2024.05

    Oral presentation (general)

  • Influences of tool tip geometry on surface/subsurface damage formation in nanoscratching of single-crystal 4H-SiC

    W. Huang, J. Yan

    7th CIRP CSI Conference on Surface Integrity 2024 (Bremen) , 

    2024.05

    Oral presentation (general)

  • Ultraprecision manufacturing for small optics

    J. Yan

    Nanotechnology and Precision Engineering (NPE) International Series Forum (Online) , 

    2024.04

    Oral presentation (invited, special)

  • 自由曲面加工における工具姿勢に起因する切削メカニズム変化

    川上凜太朗,閻 紀旺

    精密工学会第31回学生会員卒業研究発表講演会 (東京) , 

    2024.03

    Oral presentation (general)

display all >>

Awards 【 Display / hide

  • JSME Medal for Outstanding Paper

    L. Zhang, Y. Sato, J. Yan, 2024.04, The Japan Society of Mechanical Engineers, Optimization of fast tool servo diamond turning for enhancing geometrical accuracy and surface quality of freeform optics

    Type of Award: Award from Japanese society, conference, symposium, etc.

  • IJEM Best Editor Award

    J. Yan, 2024.01, International Journal of Extreme Manufacturing (IJEM), IoP publishing

    Type of Award: Honored in official journal of a scientific society, scientific journal

  • JSPE Best Paper Award

    Lin Zhang, Allen Yi, J. Yan, 2023.03, The Japan Society for Precision Engineering, Flexible fabrication of Fresnel micro-lens array by off-spindle-axis diamond turning and precision glass molding

    Type of Award: Award from Japanese society, conference, symposium, etc.

  • 2022 IJEM Best Paper Award

    Y. Sato, J. Yan, 2023.03, International Journal of Extreme Manufacturing (IJEM), IoP publishing, Tool path generation and optimization for freeform surface diamond turning based on an independently controlled fast tool servo

    Type of Award: Honored in official journal of a scientific society, scientific journal

  • Machine Tool Technology Promotion Award

    S. Kasai, T. Sodetai, J. Yan, 2021.06, 工作機械技術振興財団, 炭素拡散反応を用いた形彫り放電加工による多結晶ダイヤモンドの3次元形状創製

    Type of Award: Award from publisher, newspaper, foundation, etc.

display all >>

 

Courses Taught 【 Display / hide

  • ULTRAPRECISION MACHINING AND METROLOGY

    2024

  • SPECIAL LECTURE SERIES ON MULTIDISCIPLINARY AND DESIGN SCIENCE

    2024

  • LABORATORIES IN SCIENCE AND TECHNOLOGY

    2024

  • INDEPENDENT STUDY ON INTEGRATED DESIGN ENGINEERING

    2024

  • INDEPENDENT STUDIES IN MECHANICAL ENGINEERING

    2024

display all >>

 

Memberships in Academic Societies 【 Display / hide

  • The Japan Society of Mechanical Engineers, 

    1997.04
    -
    Present
  • The Japan Society for Precision Engineering, 

    1997.04
    -
    Present
  • The Japan Society for Abrasive Technology, 

    2000.04
    -
    Present
  • Japan Society for Applied Physics (JSAP), 

    2004.04
    -
    Present
  • Japan Laser Processing Society (JLPS), 

    2009.01
    -
    Present

display all >>

Committee Experiences 【 Display / hide

  • 2024.01
    -
    Present

    Associate Editor, Journal of Materials Processing Technology

  • 2022.05
    -
    Present

    Director, Japan Society of Laser Technology (JSLT)

  • 2022.03
    -
    Present

    Director, Executive Director, Chairman of Publication Sector, Chairman of Journal Review Board, Japan Society of Precision Engineering (JSPE)

  • 2019.04
    -
    2022.03

    Journal Editorial Commitee Member, 日本機械学会

  • 2019.01
    -
    Present

    Editorial Board Member, International Journal of Extreme Manufacturing

display all >>