木村 豪志 (キムラ タケシ)

Kimura, Takeshi

写真a

所属(所属キャンパス)

医学部 予防医療センター (信濃町)

職名

特任助教(有期)

 

論文 【 表示 / 非表示

  • Estimation of maximal lactate steady state using the sweat lactate sensor

    Muramoto Y., Nakashima D., Amano T., Harita T., Sugai K., Daigo K., Iwasawa Y., Ichihara G., Okawara H., Sawada T., Kinoda A., Yamada Y., Kimura T., Sato K., Katsumata Y.

    Scientific Reports (Scientific Reports)  13 ( 1 )  2023年12月

     概要を見る

    A simple, non-invasive algorithm for maximal lactate steady state (MLSS) assessment has not been developed. We examined whether MLSS can be estimated from the sweat lactate threshold (sLT) using a novel sweat lactate sensor for healthy adults, with consideration of their exercise habits. Fifteen adults representing diverse fitness levels were recruited. Participants with/without exercise habits were defined as trained/untrained, respectively. Constant-load testing for 30 min at 110%, 115%, 120%, and 125% of sLT intensity was performed to determine MLSS. The tissue oxygenation index (TOI) of the thigh was also monitored. MLSS was not fully estimated from sLT, with 110%, 115%, 120%, and 125% of sLT in one, four, three, and seven participants, respectively. The MLSS based on sLT was higher in the trained group as compared to the untrained group. A total of 80% of trained participants had an MLSS of 120% or higher, while 75% of untrained participants had an MLSS of 115% or lower based on sLT. Furthermore, compared to untrained participants, trained participants continued constant-load exercise even if their TOI decreased below the resting baseline (P < 0.01). MLSS was successfully estimated using sLT, with 120% or more in trained participants and 115% or less in untrained participants. This suggests that trained individuals can continue exercising despite decreases in oxygen saturation in lower extremity skeletal muscles.

 

担当授業科目 【 表示 / 非表示

  • フィジカルアセスメント

    2022年度