村野 健作 (ムラノ ケンサク)

Murano, Kensaku

写真a

所属(所属キャンパス)

医学部 分子生物学教室 分子生物学教室 (信濃町)

職名

専任講師

HP

 

研究分野 【 表示 / 非表示

  • ライフサイエンス / ゲノム生物学

 

著書 【 表示 / 非表示

  • Generation of Stable Drosophila Ovarian Somatic Cell Lines Using the piggyBac System

    Takeuchi C., Murano K., Ishikawa M., Okano H., Iwasaki Y.W., Methods in Molecular Biology, 2022年

     概要を見る

    Transposable elements (TEs) constitute a large proportion of the genome in multiple organisms. Therefore, anti-transposable element machineries are essential to maintain genomic integrity. PIWI-interacting RNAs (piRNAs) are a major force to repress TEs in Drosophila ovaries. Ovarian somatic cells (OSC), in which nuclear piRNA regulation is functional, have been used for research on piRNA pathway as a cell culture system to elucidate the molecular mechanisms underlying the piRNA pathway. Analysis of piRNA pathway using a reporter system to monitor the gene regulation or overexpression of specific genes would be a powerful approach. Here, we present the technical protocol to establish stable cell lines using the piggyBac system, adopted for OSCs. This easy, consistent, and timesaving protocol may accelerate research on the piRNA pathway.

  • タンパク質発現プロトコール

    村野 健作, 羊土社, 2010年

    担当範囲: 哺乳動物細胞

  • Recent DNA Structure, Chromatin and Gene Expression

    村野 健作, Transworld Research Network, 2006年

    担当範囲: Molecular and physiological roles of histone chaperones

  • クロマチンと遺伝子機能制御

    村野 健作, シュプリンガー・フェアラーク東京, 2003年

    担当範囲: ヒトモデルとしてのマウスとウイルスからみたクロマチン制御

論文 【 表示 / 非表示

  • Transcription of MERVL retrotransposons is required for preimplantation embryo development.

    Sakashita A, Kitano T, Ishizu H, Guo Y, Masuda H, Ariura M, Murano K, Siomi H

    Nature genetics (Springer Science and Business Media LLC)  2023年03月

    ISSN  1061-4036

     概要を見る

    Abstract

    Zygotic genome activation (ZGA) is a critical postfertilization step that promotes totipotency and allows different cell fates to emerge in the developing embryo. MERVL (murine endogenous retrovirus-L) is transiently upregulated at the two-cell stage during ZGA. Although MERVL expression is widely used as a marker of totipotency, the role of this retrotransposon in mouse embryogenesis remains elusive. Here, we show that full-length MERVL transcripts, but not encoded retroviral proteins, are essential for accurate regulation of the host transcriptome and chromatin state during preimplantation development. Both knockdown and CRISPRi-based repression of MERVL result in embryonic lethality due to defects in differentiation and genomic stability. Furthermore, transcriptome and epigenome analysis revealed that loss of MERVL transcripts led to retention of an accessible chromatin state at, and aberrant expression of, a subset of two-cell-specific genes. Taken together, our results suggest a model in which an endogenous retrovirus plays a key role in regulating host cell fate potential.

  • Memory B Cells and Memory T Cells Induced by SARS-CoV-2 Booster Vaccination or Infection Show Different Dynamics and Responsiveness to the Omicron Variant

    Mise-Omata S., Ikeda M., Takeshita M., Uwamino Y., Wakui M., Arai T., Yoshifuji A., Murano K., Siomi H., Nakagawara K., Ohyagi M., Ando M., Hasegawa N., Saya H., Murata M., Fukunaga K., Namkoong H., Lu X., Yamasaki S., Yoshimura A.

    Journal of Immunology (Journal of Immunology)  209 ( 11 ) 2104 - 2113 2022年12月

    ISSN  00221767

     概要を見る

    Although the immunological memory produced by BNT162b2 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been well studied and established, further information using different racial cohorts is necessary to understand the overall immunological response to vaccination. We evaluated memory B and T cell responses to the severe acute respiratory syndrome coronavirus 2 spike protein before and after the third booster using a Japanese cohort. Although the Ab titer against the spike receptor-binding domain (RBD) decreased significantly 8 mo after the second vaccination, the number of memory B cells continued to increase, whereas the number of memory T cells decreased slowly. Memory B and T cells from unvaccinated infected patients showed similar kinetics. After the third vaccination, the Ab titer increased to the level of the second vaccination, and memory B cells increased at significantly higher levels before the booster, whereas memory T cells recovered close to the second vaccination levels. In memory T cells, the frequency of CXCR5+CXCR3+CCR62 circulating follicular Th1 was positively correlated with RBD-specific Ab-secreting B cells. For the response to variant RBDs, although 60-80% of memory B cells could bind to the omicron RBD, their avidity was low, whereas memory T cells show an equal response to the omicron spike. Thus, the persistent presence of memory B and T cells will quickly upregulate Ab production and T cell responses after omicron strain infection, which prevents severe illness and death due to coronavirus disease 2019.

  • TDP-43 safeguards the embryo genome from L1 retrotransposition

    Li T.D., Murano K., Kitano T., Guo Y., Negishi L., Siomi H.

    Science Advances (Science Advances)  8 ( 47 ) eabq3806 2022年11月

     概要を見る

    Transposable elements (TEs) are genomic parasites that propagate within the host genome and introduce mutations. Long interspersed nuclear element-1 (LINE-1 or L1) is the major TE class, which occupies nearly 20% of the mouse genome. L1 is highly active in mammalian preimplantation embryos, posing a major threat to genome integrity, but the mechanism of stage-specific protection against L1 retrotransposition is unknown. Here, we show that TAR DNA–binding protein 43 (TDP-43), mutations in which constitute a major risk factor for amyotrophic lateral sclerosis, inhibits L1 retrotransposition in mouse embryonic stem cells (mESCs) and preimplantation embryos. Knockdown of TDP-43 resulted in massive genomic L1 expansion and impaired cell growth in preimplantation embryos and ESCs. Functional analysis demonstrated that TDP-43 interacts with L1 open reading frame 1 protein (L1 ORF1p) to mediate genomic protection, and loss of this interaction led to derepression of L1 retrotransposition. Our results identify TDP-43 as a guardian of the embryonic genome.

  • The emergence of SARS-CoV-2 variants threatens to decrease the efficacy of neutralizing antibodies and vaccines

    Murano K., Guo Y., Siomi H.

    Biochemical Society Transactions (Biochemical Society Transactions)  49 ( 6 ) 2879 - 2890 2021年12月

    ISSN  03005127

     概要を見る

    The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the coronavirus disease (COVID-19) pandemic. As of August 2021, more than 200 million people have been infected with the virus and 4.3 million have lost their lives. Various monoclonal antibodies of human origin that neutralize the SARS-CoV-2 infection have been isolated from convalescent patients for therapeutic and prophylactic purposes. Several vaccines have been developed to restrict the spread of the virus and have been rapidly administered. However, the rollout of vaccines has coincided with the spread of variants of concern. Emerging variants of SARS-CoV-2 present new challenges for therapeutic antibodies and threaten the efficacy of current vaccines. Here, we review the problems faced by neutralizing antibodies and vaccines in the midst of the increasing spread of mutant viruses.

  • Potent mouse monoclonal antibodies that block SARS-CoV-2 infection

    Guo Y., Kawaguchi A., Takeshita M., Sekiya T., Hirohama M., Yamashita A., Siomi H., Murano K.

    Journal of Biological Chemistry (Journal of Biological Chemistry)  296   100346 - 100346 2021年01月

    ISSN  00219258

     概要を見る

    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a global pandemic since its first outbreak in the winter of 2019. An extensive investigation of SARS-CoV-2 is critical for disease control. Various recombinant monoclonal antibodies of human origin that neutralize SARS-CoV-2 infection have been isolated from convalescent patients and will be applied as therapies and prophylaxis. However, the need for dedicated monoclonal antibodies suitable for molecular pathology research is not fully addressed. Here, we produced six mouse anti-SARS-CoV-2 spike monoclonal antibodies that not only exhibit robust performance in immunoassays including western blotting, ELISA, immunofluorescence, and immunoprecipitation, but also demonstrate neutralizing activity against SARS-CoV-2 infection to VeroE6/TMPRSS2 cells. Due to their mouse origin, our monoclonal antibodies are compatible with the experimental immunoassay setups commonly used in basic molecular biology research laboratories, providing a useful tool for future research. Furthermore, in the hope of applying the antibodies of clinical setting, we determined the variable regions of the antibodies and used them to produce recombinant human/mouse chimeric antibodies.

全件表示 >>

KOARA(リポジトリ)収録論文等 【 表示 / 非表示

全件表示 >>

総説・解説等 【 表示 / 非表示

  • SARS-CoV-2感染を阻害する強力なマウスモノクローナル抗体

    村野健作, GUO Youjia, 川口敦史, 竹下勝, 山下暁朗, 塩見春彦

    日本分子生物学会年会プログラム・要旨集(Web) 43rd 2020年

  • PiwiはMaelstromを介してBrm依存的なトランスポゾンを抑制する

    大西遼, 佐藤薫, 村野健作, 根岸瑠美, 塩見春彦, 塩見美喜子

    日本分子生物学会年会プログラム・要旨集(Web) 43rd 2020年

  • piRNAを介したトランスポゾン転写抑制機構におけるMaelとBrmの機能

    大西遼, 佐藤薫, 村野健作, 高橋亜紀子, 根岸瑠美, 塩見春彦, 塩見美喜子

    日本RNA学会年会要旨集 21st 2019年

  • 転写因子Sp1によるサイレンと遺伝子の活性化

    浅賀正充N, 村野健作, 加藤広介, 永田恭介

    生化学  2007年

    ISSN  0037-1017

  • Functional specificity of histone chaperones

    Kyosuke Nagata, Kensaku Murano, Kohsuke Kato, Mitsuru Okuwaki

    GENES & GENETIC SYSTEMS (GENETICS SOC JAPAN)  81 ( 6 ) 456 - 456 2006年12月

    ISSN  1341-7568

全件表示 >>

競争的研究費の研究課題 【 表示 / 非表示

  • 転移因子の転写と共役した細胞核構造の組織化

    2023年04月
    -
    2027年03月

    村野 健作, 基盤研究(B), 補助金,  研究代表者

  • トランスポゾンによる全能性制御機構の解析

    2020年07月
    -
    2022年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 村野 健作, 挑戦的研究(萌芽), 補助金,  研究代表者

     研究概要を見る

    ゲノムの膨大な領域(ヒトでは40%以上)を占めるトランスポゾンは、ゲノムに内在する変異原であり、転移を繰り返すことで宿主ゲノムを損傷するものと考えられてきた。つまりトランスポゾンは宿主によって抑制されなければならない対象である。一方、近年のゲノム解析の進展から、トランスポゾンはゲノム進化の原動力であると考えられるようになった。トランスポゾンは、宿主の遺伝子発現系に取り込まれ(Co-option)、複雑な発生を可能にする遺伝子プログラムの構築に寄与するというモデルが提唱されている。本研究では、トランスポゾンのもう一つの側面、すなわち宿主の遺伝子プログラムへの貢献という観点に立ち、マウス初期胚発生期に一過的に発現するトランスポゾンと宿主の相互作用に着目する。初期胚とES細胞を用いて、それらがどのように全能性制御に関わるか解明し、トランスポゾンと宿主の共生関係の理解を目指す。
    マウスのレトロトランスポゾンMuERVL(マーブル, Murine Endogenous RetroVirus with Leucine tRNA primer)はゲノム内に1000コピー以上存在する。マウス初期胚、特に全能性を保持する2細胞期胚において一過的に大量発現し、全能性の喪失と同調して消失する。MuERVLのコードするGagタンパク質は多量体を形成し、自身のRNAと結合することが明らかとなった。FISHと免疫染色法を用いた解析からマウス2細胞期胚の細胞核に局在するMuERVL RNAは徐々に細胞質へと排出され、4細胞への分裂直前には全て細胞質へと移動し、Gagタンパク質と共局在する様子が観察された。現在、Gagタンパク質と相互作用する宿主mRNAの動態について観察を続けている。

  • 小分子RNAによるトランスポゾン転写抑制機構の解析

    2020年04月
    -
    2023年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 村野 健作, 基盤研究(B), 補助金,  研究代表者

     研究概要を見る

    生殖細胞系列で転移と増殖を繰り返すトランスポゾンは、生命の次世代継承にとって脅威である。非コード小分子RNA(piRNA)とPiwiタンパク質の複合体は、配列情報と相補的なトランスポゾンを標的とし、周辺にヘテロクロマチンを形成することで抑制している。我々はPiwi-piRNA複合体と相互作用し、トランスポゾンを抑制する因子としてNxf2 (Nuclear RNA export factor 2)を同定した。Nxf2はmRNAの核外輸送に関与はせず、ヘテロクロマチンを形成する前にトランスポゾンの転写反応を抑制することを明らかにした (Murano K et al., EMBO J 2019)。しかし、その転写抑制メカニズムは不明である。本研究では、転写と共役させた系を用いてNxf2の相互作用因子を探索し、Piwi-piRNA経路によるトランスポゾンの転写抑制機構を解明する。
    本研究では、Nxf2-p15-Panx複合体によるトランスポゾンの転写反応抑制機構の解明を通して、Piwi-piRNA経路による生殖ゲノム恒常性維持の全体像を理解する。これまでに、Piwi-piRNA経路によるトランスポゾンの転写抑制は、少なくとも二段階に分けられることが分かった。特に初期段階での転写抑制機構に焦点をあて、転写と共役させた誘導係留レポーターシステムを用いて新生mRNA上におけるNxf2-p15-Panx複合体の相互作用因子の探索を行なった。新生mRNA上へ係留されたラムダNタンパク質を融合したNxf2を免疫沈降法により精製し、相互作用する因子を質量分析法により多数同定した。今後、同定した因子のトランスポゾン 抑制活性を評価し、Piwi-piRNA経路による転写反応と共役した転写抑制機構の解明を目指す。

  • 非コードRNAによる生殖細胞ゲノムの恒常性維持機構

    2017年04月
    -
    2020年03月

    文部科学省・日本学術振興会, 科学研究費助成事業, 村野 健作, 基盤研究(C), 補助金,  研究代表者

     研究概要を見る

    生殖細胞系列で転移と増殖を繰り返すレトロトランスポゾンは、生命の次世代継承にとって脅威である。非コード小分子RNA(piRNA)とPIWIタンパク質の複合体は、配列情報と相補的なレトロトランスポゾンを抑制し、ゲノムの恒常性を維持している。本研究ではPIWI-piRNA経路の解析を通じて、宿主が非自己であるレトロトランスポゾンを寛容・承認し、「ゲノムの恒常性を維持しつつ進化していく過程」の理解を目的としている。生殖細胞に発現するPIWI-piRNA経路の機能は、倫理的な問題からヒトでの解析は困難であり、マウスを使った場合でも試料の少なさから生化学的解析が遅れている。そこで、本研究では機能的PIWI-piRNA経路を保持するヒトまたはマウス培養細胞株の確立を目指している。Fred Gage博士の研究チームは、霊長類であるヒト、ボノボ、チンパンジーのiPS細胞を構築し、RNA-seqによる遺伝子発現パターンを比較した。その結果、ヒトiPS細胞では、他の二つの霊長類iPS細胞に比べて、PIWI遺伝子の一つPIWIL2の発現量が高いことが明らかとなった。我々もヒトiPS細胞内でPIWIL2のmRNAを検出できた。以上の結果から、ヒトiPS細胞は我々の求める「機能的PIWI-piRNA経路を保持する培養細胞株」の第一候補となっている。しかしながら、この報告を含めてこれまでにヒトPIWIL2-piRNA複合体の実体は検出されていない。そこでヒトPIWIL2に対するモノクローナル抗体を作製した。残念ながらヒト精巣抽出液を用いたウェスタンブロッティング法ではヒトPIWIL2の発現を確認できるものの、ヒトiPS細胞でヒトPIWIL2の発現は検出できなかった。現在、ヒト精巣腫瘍由来細胞株に着目してヒトPIWIL2-piRNA複合体を発現する細胞株の探索を続けている
    現在までに、ヒトPIWIL2に対するモノクローナル抗体の作製に成功している。ヒトiPS細胞ではmRNAレベルでヒトPIWIL2の発現は確認できたものの、タンパク質としては発現していないことが明らかとなった。したがって我々の求める機能的PIWI-piRNA経路を保持する培養細胞株の候補から、ヒトiPS細胞は外れることになった。一方で、ヒト精巣抽出液由来のヒトPIWIL2タンパク質の検出ができていることから、我々の求める機能的PIWI-piRNA経路を保持する培養細胞株の探索の準備は整った。
    これまでにmRNAレベルにおいてPIWIL2を発現する培養細胞株が多数報告されている。それら細胞株を取り寄せて、構築したヒトPIWIL2に対するモノクローナル抗体を用いて評価を行う。また、免疫沈降法により結合している小分子RNAの有無を評価することにより、我々の求める機能的PIWI-piRNA経路を保持する培養細胞株の探索を続ける。また、培養細胞の改変により求める細胞株の構築を試みる。転写因子A-MYBはマウスにおいてpiRNA前駆体をはじめ、PIWI-piRNA経路に関わる遺伝子(Piwi1, Piwil2, MitoPld, Mov10l1, Vasa等)の転写反応を正に制御しているが明らかとなっている。したがって転写因子A-MYBの強制発現により機能的PIWI-piRNA経路を保持する細胞株が得られると考えている。候補となっている細胞株にA-MYBの強制発現を予定している。

  • 新規高感度レポーター系を用いたrRNA遺伝子の種特異的転写開始機構の解析

    2013年06月
    -
    2015年03月

    筑波大学, 科学研究費助成事業 新学術領域研究(研究領域提案型), 村野 健作, 新学術領域研究(研究領域提案型), 未設定

     研究概要を見る

    rRNA遺伝子の転写反応は厳格な種特異性を示す。ヒトrRNA遺伝子はマウス細胞内で転写されず、またマウスrRNA遺伝子はヒト細胞内で転写されない。この種特異的転写は、マルチサブユニット因子SL1(ヒト)およびTIF-IB(マウス)に起因する。SL1/TIF-IBはrRNA遺伝子のコアプロモーターを認識し、転写開始点を規定する。rRNA遺伝子の転写開始反応を支配する複合体であるにもかかわらず、これまで構成因子によるSL1/TIF-IB活性の再構成はなされてこなかった。我々は、マウス細胞内においてヒトrRNA遺伝子転写を再構成し、マウス細胞内におけるSL1活性にはヒト由来の4種類のTAFI(TBP-associate factor I)が必要かつ十分であることを示してきた。一方で、マウス由来の4種類のTAFIを発現させても、ヒト細胞内においてマウスrRNA遺伝子転写を再構成することができなかった。試験管内転写反応系においても、HeLa細胞核抽出液はマウスF9細胞核抽出液を用いたマウスrRNA遺伝子転写を阻害した。また、マウスF9細胞核抽出液はHeLa細胞核抽出液を用いたヒトrRNA遺伝子の転写反応を阻害することが明らかとなった。そこで、SL1とTIF-IBはそれぞれマウスとヒトのrRNA遺伝子転写に干渉する可能性を検討した。マウス細胞内においてSL1構成因子の過剰発現は、マウスrRNA遺伝子の転写反応を強く抑制した。また、siRNAを用いてSL1構成因子の発現抑制を試みたところ、HeLa細胞内においてTIF-IB構成因子の過剰発現によりマウスrRNA遺伝子の転写に成功した。以上の結果から、HeLa細胞内におけるマウスrRNA遺伝子転写では、SL1がTIF-IB活性に干渉することが明らかとなった。
    26年度が最終年度であるため、記入しない。
    26年度が最終年度であるため、記入しない。

全件表示 >>

 

担当授業科目 【 表示 / 非表示

  • 分子生物学Ⅱ

    2023年度

  • 分子生物学Ⅱ

    2022年度

  • 分子生物学Ⅱ

    2021年度

  • 分子生物学Ⅱ

    2020年度

  • 分子生物学Ⅱ

    2019年度